Ligand source activities (1 row/activity)





Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
AssayType

Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

162647583 179899 0 None -25 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 413 4 3 6 3.1 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)[C@H](C3CCCCC3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4745933 179899 0 None -25 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 413 4 3 6 3.1 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)[C@H](C3CCCCC3)N2)c1O 10.1021/acsmedchemlett.1c00113
162652088 180261 0 None -707 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 359 4 3 6 1.9 CCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
CHEMBL4750465 180261 0 None -707 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 359 4 3 6 1.9 CCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
162675855 183311 0 None -45 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 425 4 3 6 3.0 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccc(F)cc3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4797191 183311 0 None -45 2 Human 4.0 pIC50 = 4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 425 4 3 6 3.0 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccc(F)cc3)N2)c1O 10.1021/acsmedchemlett.1c00113
122187259 123009 0 None -1 2 Human 5.9 pIC50 = 5.9 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 366 6 4 6 1.2 O=C(Nc1ccc(F)cc1)c1cnc(NCc2cccc(B(O)O)c2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609008 123009 0 None -1 2 Human 5.9 pIC50 = 5.9 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 366 6 4 6 1.2 O=C(Nc1ccc(F)cc1)c1cnc(NCc2cccc(B(O)O)c2)nc1 10.1016/j.bmcl.2015.07.090
56839294 123007 0 None -1 2 Human 5.9 pIC50 = 5.9 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 379 6 3 5 1.8 CN(Cc1ccc(B(O)O)cc1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609005 123007 0 None -1 2 Human 5.9 pIC50 = 5.9 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 379 6 3 5 1.8 CN(Cc1ccc(B(O)O)cc1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
162673727 182983 0 None -218 2 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 373 5 3 6 2.3 CCCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
CHEMBL4793352 182983 0 None -218 2 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 373 5 3 6 2.3 CCCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
8497 2737 57 None -5 3 Human 6.8 pIC50 = 6.8 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/acsmedchemlett.1c00113
9865554 2737 57 None -5 3 Human 6.8 pIC50 = 6.8 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/acsmedchemlett.1c00113
CHEMBL216981 2737 57 None -5 3 Human 6.8 pIC50 = 6.8 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/acsmedchemlett.1c00113
122187257 123008 0 None -20 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1ccc(B(O)O)cn1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609006 123008 0 None -20 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1ccc(B(O)O)cn1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
122187261 123011 0 None 1 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 366 6 4 6 1.2 O=C(Nc1ccc(F)cc1)c1cnc(NCc2ccc(B(O)O)cc2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609010 123011 0 None 1 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 366 6 4 6 1.2 O=C(Nc1ccc(F)cc1)c1cnc(NCc2ccc(B(O)O)cc2)nc1 10.1016/j.bmcl.2015.07.090
122187262 123013 0 None -1 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 381 6 3 7 0.6 CN(Cc1ccc(B(O)O)cn1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609012 123013 0 None -1 2 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 381 6 3 7 0.6 CN(Cc1ccc(B(O)O)cn1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
8497 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assayAntagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2020.112537
9865554 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assayAntagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2020.112537
CHEMBL216981 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assayAntagonist activity at CXCR1 (unknown origin) expressed in HEK293 cells assessed as suppression of IL-8-induced inhibition of forskolin-induced cAMP formation preincubated for 15 mins followed by forskolin and IL-8 stimulation and measured after 15 mins by cAMP-d2 and Eu-Anti-cAMP based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2020.112537
8497 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assayAntagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2019.111914
9865554 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assayAntagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2019.111914
CHEMBL216981 2737 57 None -5 3 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assayAntagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells assessed as reduction in IL-8-induced intracellular calcium change incubated for 15 mins followed by IL-8-stimulation and measured after 15 mins by cAMP-d2/Eu-Anti-cAM based fluorescence assay
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.ejmech.2019.111914
162648477 179962 0 None -707 2 Human 4.7 pIC50 = 4.7 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 373 5 3 6 2.3 CCC[C@H]1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
CHEMBL4746698 179962 0 None -707 2 Human 4.7 pIC50 = 4.7 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 373 5 3 6 2.3 CCC[C@H]1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
122187269 123019 0 None 2 2 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 458 8 3 8 1.5 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccccn2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609019 123019 0 None 2 2 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 458 8 3 8 1.5 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccccn2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
162652658 180439 0 None -407 2 Human 4.7 pIC50 = 4.7 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3Cl)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4752486 180439 0 None -407 2 Human 4.7 pIC50 = 4.7 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3Cl)N2)c1O 10.1021/acsmedchemlett.1c00113
162657065 180901 0 None -1548 2 Human 4.6 pIC50 = 4.6 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 522 7 4 8 3.4 CC(C)(C)OC(=O)NCCCS(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4757674 180901 0 None -1548 2 Human 4.6 pIC50 = 4.6 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 522 7 4 8 3.4 CC(C)(C)OC(=O)NCCCS(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
122187260 123010 0 None 1 2 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1cccc(B(O)O)c1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609009 123010 0 None 1 2 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1cccc(B(O)O)c1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
155531736 171674 0 None -60 2 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells co-expressing Galpha16 assessed as reduction in IL-8-induced intracellular calcium change incubated for 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells co-expressing Galpha16 assessed as reduction in IL-8-induced intracellular calcium change incubated for 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 395 5 3 6 2.6 O=C(c1cccc(Nc2c(NC3C[C@@H]4CC[C@H]3C4)c(=O)c2=O)c1O)N1CCCC1 10.1016/j.ejmech.2019.111853
CHEMBL4466314 171674 0 None -60 2 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells co-expressing Galpha16 assessed as reduction in IL-8-induced intracellular calcium change incubated for 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity at CXCR1 (unknown origin) stably expressed in HEK293 cells co-expressing Galpha16 assessed as reduction in IL-8-induced intracellular calcium change incubated for 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 395 5 3 6 2.6 O=C(c1cccc(Nc2c(NC3C[C@@H]4CC[C@H]3C4)c(=O)c2=O)c1O)N1CCCC1 10.1016/j.ejmech.2019.111853
122187266 123017 0 None 6 2 Human 8.5 pIC50 = 8.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 446 8 3 7 2.3 O=C(Nc1ccc(F)cc1)c1ccc(N(Cc2ccc(B(O)O)cn2)Cc2ccco2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609016 123017 0 None 6 2 Human 8.5 pIC50 = 8.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 446 8 3 7 2.3 O=C(Nc1ccc(F)cc1)c1ccc(N(Cc2ccc(B(O)O)cn2)Cc2ccco2)nc1 10.1016/j.bmcl.2015.07.090
46897163 119083 5 None 1 2 Human 7.5 pIC50 = 7.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 466 7 3 6 3.3 O=C(Nc1ccc(F)cc1)c1ccc(SCc2cc(OC(F)(F)F)ccc2B(O)O)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3426944 119083 5 None 1 2 Human 7.5 pIC50 = 7.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 466 7 3 6 3.3 O=C(Nc1ccc(F)cc1)c1ccc(SCc2cc(OC(F)(F)F)ccc2B(O)O)nc1 10.1016/j.bmcl.2015.07.090
122187263 123014 0 None -1 2 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 456 8 3 6 2.8 O=C(Nc1ccc(F)cc1)c1ccc(N(Cc2ccccc2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609013 123014 0 None -1 2 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 456 8 3 6 2.8 O=C(Nc1ccc(F)cc1)c1ccc(N(Cc2ccccc2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
10112327 126229 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL365008 126229 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
9843640 65660 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 395 7 0 5 4.2 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL183425 65660 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 395 7 0 5 4.2 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
162656425 180879 0 None -41 2 Human 4.4 pIC50 = 4.4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccc(Cl)cc3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4757462 180879 0 None -41 2 Human 4.4 pIC50 = 4.4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccc(Cl)cc3)N2)c1O 10.1021/acsmedchemlett.1c00113
44393593 65069 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 312 5 0 4 4.0 CN(C)COc1ccc(-c2cc(-c3ccc(F)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL182361 65069 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 312 5 0 4 4.0 CN(C)COc1ccc(-c2cc(-c3ccc(F)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
122187255 123005 0 None -10 2 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 379 6 3 5 1.8 CN(Cc1cccc(B(O)O)c1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609003 123005 0 None -10 2 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 379 6 3 5 1.8 CN(Cc1cccc(B(O)O)c1)c1ccc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
162648010 179971 0 None -138 2 Human 4.4 pIC50 = 4.4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 387 5 3 6 2.5 CC(C)CC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
CHEMBL4746803 179971 0 None -138 2 Human 4.4 pIC50 = 4.4 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 387 5 3 6 2.5 CC(C)CC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
122187256 123006 0 None -1 2 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 365 6 4 5 1.8 O=C(Nc1ccc(F)cc1)c1ccc(NCc2ccc(B(O)O)cc2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609004 123006 0 None -1 2 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 365 6 4 5 1.8 O=C(Nc1ccc(F)cc1)c1ccc(NCc2ccc(B(O)O)cc2)nc1 10.1016/j.bmcl.2015.07.090
122187271 123020 0 None 1 2 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 447 8 3 8 1.7 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccc(B(O)O)cn2)Cc2ccco2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609021 123020 0 None 1 2 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 447 8 3 8 1.7 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccc(B(O)O)cn2)Cc2ccco2)nc1 10.1016/j.bmcl.2015.07.090
10295195 127150 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 412 7 0 6 4.1 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL365671 127150 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Inhibition of interleukin-8 induced elastase release from human neutrophilsInhibition of interleukin-8 induced elastase release from human neutrophils
ChEMBL 412 7 0 6 4.1 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
162667668 182434 1 None -776 2 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 407 4 3 6 2.9 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4786074 182434 1 None -776 2 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 407 4 3 6 2.9 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
162676913 183521 0 None -158 2 Human 4.3 pIC50 = 4.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3cccc(Cl)c3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4799848 183521 0 None -158 2 Human 4.3 pIC50 = 4.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 441 4 3 6 3.5 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3cccc(Cl)c3)N2)c1O 10.1021/acsmedchemlett.1c00113
162659583 181377 0 None -602 2 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 423 6 3 7 2.1 COCCS(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4763312 181377 0 None -602 2 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 423 6 3 7 2.1 COCCS(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)C(c3ccccc3)N2)c1O 10.1021/acsmedchemlett.1c00113
162650232 180000 0 None -1288 2 Human 4.3 pIC50 = 4.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 387 6 3 6 2.7 CCCCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
CHEMBL4747035 180000 0 None -1288 2 Human 4.3 pIC50 = 4.3 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 387 6 3 6 2.7 CCCCC1NC(Nc2ccc(Cl)c(S(=O)(=O)C(C)C)c2O)=NC1=O 10.1021/acsmedchemlett.1c00113
122187254 123004 0 None 1 2 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 365 6 4 5 1.8 O=C(Nc1ccc(F)cc1)c1ccc(NCc2cccc(B(O)O)c2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609002 123004 0 None 1 2 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 365 6 4 5 1.8 O=C(Nc1ccc(F)cc1)c1ccc(NCc2cccc(B(O)O)c2)nc1 10.1016/j.bmcl.2015.07.090
56839499 123012 0 None -5 2 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1ccc(B(O)O)cc1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
CHEMBL3609011 123012 0 None -5 2 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 380 6 3 6 1.2 CN(Cc1ccc(B(O)O)cc1)c1ncc(C(=O)Nc2ccc(F)cc2)cn1 10.1016/j.bmcl.2015.07.090
122187268 123018 0 None -1 2 Human 8.2 pIC50 = 8.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 457 8 3 7 2.2 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccccc2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
CHEMBL3609018 123018 0 None -1 2 Human 8.2 pIC50 = 8.2 Functional
Antagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysisAntagonist activity at CXCR1 (unknown origin) transfected in RBL cells assessed as inhibition of IL-8-mediated intracellular calcium release preincubated for 30 mins followed by IL-8 addition by FLUO-4AM-based fluorescent microplate reader analysis
ChEMBL 457 8 3 7 2.2 O=C(Nc1ccc(F)cc1)c1cnc(N(Cc2ccccc2)Cc2ccc(B(O)O)cn2)nc1 10.1016/j.bmcl.2015.07.090
46897162 3716 11 None -6 2 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assayAntagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assay
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1021/jm500827t
8501 3716 11 None -6 2 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assayAntagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assay
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1021/jm500827t
CHEMBL3342269 3716 11 None -6 2 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assayAntagonist activity at human CXCR1 expressed in HEK293 cells assessed as inhibition of CXCL8-induced intracellular Ca2+ release by fluorescence based calcium flux assay
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1021/jm500827t
162646828 179610 0 None -912 2 Human 5.0 pIC50 = 5.0 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 413 4 3 6 3.1 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)[C@@H](C3CCCCC3)N2)c1O 10.1021/acsmedchemlett.1c00113
CHEMBL4742368 179610 0 None -912 2 Human 5.0 pIC50 = 5.0 Functional
Antagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assayAntagonist activity in CXCR1 (unknown origin) expressed in human HEK293 cells co-expressing Galpha16 assessed as reduction in calcium immobilization pretreated with Fluo-4AM for 45 mins followed by compound addition and measured after 10 mins by Fluo-4AM dye based fluorescence assay
ChEMBL 413 4 3 6 3.1 CC(C)S(=O)(=O)c1c(Cl)ccc(NC2=NC(=O)[C@@H](C3CCCCC3)N2)c1O 10.1021/acsmedchemlett.1c00113
5280343 188275 124 None -3 12 Human 8.3 pIC50 = 8.3 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 None
CHEMBL1520590 188275 124 None -3 12 Human 8.3 pIC50 = 8.3 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 None
CHEMBL50 188275 124 None -3 12 Human 8.3 pIC50 = 8.3 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 None
2812 4779 101 None -16 44 Human 8.2 pIC50 = 8.2 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 None
CHEMBL104 4779 101 None -16 44 Human 8.2 pIC50 = 8.2 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 None
3793 203209 77 None 1 4 Human 8.2 pIC50 = 8.2 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O None
45039617 203209 77 None 1 4 Human 8.2 pIC50 = 8.2 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O None
CHEMBL64391 203209 77 None 1 4 Human 8.2 pIC50 = 8.2 Functional
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
Drug Central 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O None
3033 30152 102 None 512 4 Human 8.1 pIC50 = 8.1 Functional
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
Drug Central 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl None
CHEMBL1034 30152 102 None 512 4 Human 8.1 pIC50 = 8.1 Functional
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
Drug Central 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl None
CHEMBL139 30152 102 None 512 4 Human 8.1 pIC50 = 8.1 Functional
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
Drug Central 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl None
8496 3979 0 None -7 2 Human 7.4 pIC50 = 7.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology None None None None 20044480
8497 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 17181143
8497 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 24218476
9865554 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 17181143
9865554 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 24218476
CHEMBL216981 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 17181143
CHEMBL216981 2737 57 None -5 3 Human 8.4 pIC50 = 8.4 Functional
UnclassifiedUnclassified
Guide to Pharmacology 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 24218476




Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Similar-
ity
Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
Assay
Type
Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

11372270 67504 24 None - 0 Human 10.0 pIC50 = 10 Binding
Inhibition of CXCR1 (unknown origin)Inhibition of CXCR1 (unknown origin)
ChEMBL 375 5 1 6 1.1 C[C@@H](C(=O)NS(C)(=O)=O)c1ccc(OS(=O)(=O)C(F)(F)F)cc1 10.1021/acs.jmedchem.8b00875
CHEMBL189475 67504 24 None - 0 Human 10.0 pIC50 = 10 Binding
Inhibition of CXCR1 (unknown origin)Inhibition of CXCR1 (unknown origin)
ChEMBL 375 5 1 6 1.1 C[C@@H](C(=O)NS(C)(=O)=O)c1ccc(OS(=O)(=O)C(F)(F)F)cc1 10.1021/acs.jmedchem.8b00875
CHEMBL4442431 67504 24 None - 0 Human 10.0 pIC50 = 10 Binding
Inhibition of CXCR1 (unknown origin)Inhibition of CXCR1 (unknown origin)
ChEMBL 375 5 1 6 1.1 C[C@@H](C(=O)NS(C)(=O)=O)c1ccc(OS(=O)(=O)C(F)(F)F)cc1 10.1021/acs.jmedchem.8b00875
8498 3315 51 None - 0 Human 9.0 pIC50 = 9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 283 5 1 3 2.1 CC(Cc1ccc(cc1)[C@H](C(=O)NS(=O)(=O)C)C)C 10.1021/jm300682j
9838712 3315 51 None - 0 Human 9.0 pIC50 = 9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 283 5 1 3 2.1 CC(Cc1ccc(cc1)[C@H](C(=O)NS(=O)(=O)C)C)C 10.1021/jm300682j
CHEMBL191413 3315 51 None - 0 Human 9.0 pIC50 = 9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 283 5 1 3 2.1 CC(Cc1ccc(cc1)[C@H](C(=O)NS(=O)(=O)C)C)C 10.1021/jm300682j
DB12614 3315 51 None - 0 Human 9.0 pIC50 = 9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 283 5 1 3 2.1 CC(Cc1ccc(cc1)[C@H](C(=O)NS(=O)(=O)C)C)C 10.1021/jm300682j
44419482 83235 0 None - 0 Human 7.0 pIC50 = 7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 505 4 3 5 3.8 CN(C)S(=O)(=O)c1c(C(F)(F)F)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL218665 83235 0 None - 0 Human 7.0 pIC50 = 7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 505 4 3 5 3.8 CN(C)S(=O)(=O)c1c(C(F)(F)F)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
3793 203209 77 None - 1 Human 7.0 pIC50 = 7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 7.0 pIC50 = 7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 7.0 pIC50 = 7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
44446593 94810 0 None - 0 Human 7.0 pIC50 = 7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Cl)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253497 94810 0 None - 0 Human 7.0 pIC50 = 7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Cl)co1 10.1016/j.bmcl.2008.01.024
11329244 71116 11 None - 0 Human 5.0 pIC50 = 5 Binding
Inhibition of C-X-C chemokine receptor type 1Inhibition of C-X-C chemokine receptor type 1
ChEMBL 486 7 2 5 5.4 CC(=O)c1sc(NC(=O)N[C@@H]2CCCC[C@H]2CN2CCC[C@@H](Cc3ccc(F)cc3)C2)nc1C 10.1021/jm049530m
CHEMBL195433 71116 11 None - 0 Human 5.0 pIC50 = 5 Binding
Inhibition of C-X-C chemokine receptor type 1Inhibition of C-X-C chemokine receptor type 1
ChEMBL 486 7 2 5 5.4 CC(=O)c1sc(NC(=O)N[C@@H]2CCCC[C@H]2CN2CCC[C@@H](Cc3ccc(F)cc3)C2)nc1C 10.1021/jm049530m
11272103 124375 0 None - 0 Human 5.0 pIC50 = 5 Binding
Inhibition of C-X-C chemokine receptor type 1Inhibition of C-X-C chemokine receptor type 1
ChEMBL 505 7 2 6 4.7 Cn1nnnc1-c1cccc(NC(=O)N[C@@H]2CCCC[C@H]2CN2CCC[C@@H](Cc3ccc(F)cc3)C2)c1 10.1021/jm049530m
CHEMBL363840 124375 0 None - 0 Human 5.0 pIC50 = 5 Binding
Inhibition of C-X-C chemokine receptor type 1Inhibition of C-X-C chemokine receptor type 1
ChEMBL 505 7 2 6 4.7 Cn1nnnc1-c1cccc(NC(=O)N[C@@H]2CCCC[C@H]2CN2CCC[C@@H](Cc3ccc(F)cc3)C2)c1 10.1021/jm049530m
2812 4779 101 None - 34 Human 5.0 pIC50 = 5 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.0 pIC50 = 5 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
44446605 94840 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1occc1Br 10.1016/j.bmcl.2008.01.024
CHEMBL253707 94840 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1occc1Br 10.1016/j.bmcl.2008.01.024
44419479 84303 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 578 8 4 7 4.0 CCC(CC)(NS(=O)(=O)c1c(C)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCOCC1 10.1016/j.bmcl.2006.08.042
CHEMBL221481 84303 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 578 8 4 7 4.0 CCC(CC)(NS(=O)(=O)c1c(C)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCOCC1 10.1016/j.bmcl.2006.08.042
44446647 155104 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccsc1 10.1016/j.bmcl.2008.01.024
CHEMBL401940 155104 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccsc1 10.1016/j.bmcl.2008.01.024
10157580 66310 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 396 7 0 6 3.6 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL184882 66310 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 396 7 0 6 3.6 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
44393540 166090 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 294 5 0 4 3.9 CN(C)COc1ccc(-c2cc(-c3ccccc3)on2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL425882 166090 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 294 5 0 4 3.9 CN(C)COc1ccc(-c2cc(-c3ccccc3)on2)cc1 10.1016/j.bmcl.2004.05.080
71526067 143900 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3901913 143900 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
2812 4779 101 None - 34 Human 5.0 pIC50 = 5.0 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.0 pIC50 = 5.0 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
44419476 136389 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 562 8 4 7 4.6 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2C)c1O)N1C[C@H](C)O[C@H](C)C1 10.1016/j.bmcl.2006.08.042
CHEMBL373522 136389 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 562 8 4 7 4.6 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2C)c1O)N1C[C@H](C)O[C@H](C)C1 10.1016/j.bmcl.2006.08.042
71526159 145399 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 525 8 3 9 3.6 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3913959 145399 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 525 8 3 9 3.6 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
16098488 137963 0 None - 0 Human 8.0 pIC50 = 8.0 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 425 6 3 7 3.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)C)o1 10.1021/jm0609622
CHEMBL376414 137963 0 None - 0 Human 8.0 pIC50 = 8.0 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 425 6 3 7 3.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)C)o1 10.1021/jm0609622
44446621 155485 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)s1 10.1016/j.bmcl.2008.01.024
CHEMBL404060 155485 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)s1 10.1016/j.bmcl.2008.01.024
21184843 97188 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 365 2 3 3 4.3 N#Cc1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1021/jm034248l
CHEMBL26830 97188 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 365 2 3 3 4.3 N#Cc1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1021/jm034248l
78098665 150780 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 489 7 3 8 4.0 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3956601 150780 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 489 7 3 8 4.0 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
71526341 153567 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 435 7 3 7 2.8 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccccc3)C3CCCO3)c(=O)c2=O)c1O nan
CHEMBL3980279 153567 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 435 7 3 7 2.8 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccccc3)C3CCCO3)c(=O)c2=O)c1O nan
71555361 133324 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 564 8 3 10 2.4 Cc1ccc([C@H](Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N4CCN(C)CC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704573 133324 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 564 8 3 10 2.4 Cc1ccc([C@H](Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N4CCN(C)CC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
71526603 132800 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 8 3 8 2.9 CCC1(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c2ccc(C)o2)COC1 nan
CHEMBL3701184 132800 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 8 3 8 2.9 CCC1(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c2ccc(C)o2)COC1 nan
44393730 65858 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 350 5 0 6 3.0 CN1CCN(COc2ccc(-c3cc(-c4ccccn4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL183537 65858 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 350 5 0 6 3.0 CN1CCN(COc2ccc(-c3cc(-c4ccccn4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
71525425 132812 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 509 8 3 9 2.7 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701196 132812 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 509 8 3 9 2.7 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
3033 30152 102 None - 0 Human 7.9 pIC50 = 7.9 Binding
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
ChEMBL 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl 10.1016/j.bmcl.2009.06.027
CHEMBL1034 30152 102 None - 0 Human 7.9 pIC50 = 7.9 Binding
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
ChEMBL 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl 10.1016/j.bmcl.2009.06.027
CHEMBL139 30152 102 None - 0 Human 7.9 pIC50 = 7.9 Binding
Inhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrsInhibition of wild type CXCR1 transfected in mouse L1.2 cells assessed as inhibition of CXCL8-induced cell migration pretreated for 15 mins measured after 4 hrs
ChEMBL 295 4 2 2 4.4 O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl 10.1016/j.bmcl.2009.06.027
11222420 86731 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 368 2 3 7 2.5 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Cl)N2 10.1016/j.bmcl.2007.05.011
CHEMBL231924 86731 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 368 2 3 7 2.5 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Cl)N2 10.1016/j.bmcl.2007.05.011
44393568 66195 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 339 6 0 6 3.8 CN(C)COc1ccc(-c2cc(-c3ccc([N+](=O)[O-])cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL184401 66195 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 339 6 0 6 3.8 CN(C)COc1ccc(-c2cc(-c3ccc([N+](=O)[O-])cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
71525344 132807 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCCC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701191 132807 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCCC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
44432386 147495 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 401 1 3 5 3.4 O=S1(=O)N=C(Nc2ccccc2Br)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
CHEMBL393047 147495 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 401 1 3 5 3.4 O=S1(=O)N=C(Nc2ccccc2Br)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
44432391 147766 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 375 1 3 5 3.4 O=S1(=O)N=C(Nc2cccc(F)c2Cl)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
CHEMBL393253 147766 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 375 1 3 5 3.4 O=S1(=O)N=C(Nc2cccc(F)c2Cl)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
71526160 159857 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 439 7 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H]2CCCO2)o1 nan
CHEMBL4106677 159857 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 439 7 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H]2CCCO2)o1 nan
9951571 66591 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 374 2 3 2 5.1 O=C(Nc1ccccc1Br)Nc1ccc(Cl)c(Cl)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL185259 66591 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 374 2 3 2 5.1 O=C(Nc1ccccc1Br)Nc1ccc(Cl)c(Cl)c1O 10.1016/j.bmcl.2004.06.097
9888410 122136 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 419 3 4 4 3.1 NS(=O)(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL359670 122136 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 419 3 4 4 3.1 NS(=O)(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
44446631 94814 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1sccc1Cl 10.1016/j.bmcl.2008.01.024
CHEMBL253504 94814 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1sccc1Cl 10.1016/j.bmcl.2008.01.024
135497124 174479 0 None 6 2 Human 6.8 pIC50 = 6.8 Binding
Displacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase releaseDisplacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase release
ChEMBL 429 6 3 8 4.8 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL455431 174479 0 None 6 2 Human 6.8 pIC50 = 6.8 Binding
Displacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase releaseDisplacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase release
ChEMBL 429 6 3 8 4.8 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
71525424 132811 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 475 8 3 9 2.1 Cc1ccc(C(Nc2c(Nc3cccc(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701195 132811 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 475 8 3 9 2.1 Cc1ccc(C(Nc2c(Nc3cccc(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
16098480 83485 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 437 7 3 8 2.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc2c(c1)OCO2 10.1021/jm0609622
CHEMBL220182 83485 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 437 7 3 8 2.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc2c(c1)OCO2 10.1021/jm0609622
44446650 97387 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 394 7 3 7 2.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccn1 10.1016/j.bmcl.2008.01.024
CHEMBL269707 97387 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 394 7 3 7 2.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccn1 10.1016/j.bmcl.2008.01.024
9968028 83292 0 None - 0 Human 7.8 pIC50 = 7.8 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 345 7 3 6 2.0 CCC(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.ejmech.2020.112872
CHEMBL218964 83292 0 None - 0 Human 7.8 pIC50 = 7.8 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 345 7 3 6 2.0 CCC(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.ejmech.2020.112872
44446596 94812 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 459 8 3 7 4.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccccc2)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253499 94812 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 459 8 3 7 4.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccccc2)co1 10.1016/j.bmcl.2008.01.024
9949456 98817 1 None - 0 Human 4.8 pIC50 = 4.8 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 331 2 3 3 3.7 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1 10.1021/jm034248l
CHEMBL27863 98817 1 None - 0 Human 4.8 pIC50 = 4.8 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 331 2 3 3 3.7 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1 10.1021/jm034248l
71525510 133305 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 7 3 8 2.8 Cc1cc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)oc1C nan
CHEMBL3704555 133305 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 7 3 8 2.8 Cc1cc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)oc1C nan
44419441 84134 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 411 4 3 5 2.8 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2F)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL220797 84134 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 411 4 3 5 2.8 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2F)c1O 10.1016/j.bmcl.2006.08.042
71525977 150204 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
3793 203209 77 None - 1 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
71526602 132799 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 457 8 3 8 2.5 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(CF)COC2)o1 nan
CHEMBL3701183 132799 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 457 8 3 8 2.5 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(CF)COC2)o1 nan
44393655 66175 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 383 5 0 5 4.2 CN1CCN(COc2ccc(-c3cc(-c4ccc(Cl)cc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL184318 66175 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 383 5 0 5 4.2 CN1CCN(COc2ccc(-c3cc(-c4ccc(Cl)cc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
71525793 133311 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 441 7 3 8 2.7 CN(C)C(=O)c1cccc(Nc2c(NC(c3cccs3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3704561 133311 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 441 7 3 8 2.7 CN(C)C(=O)c1cccc(Nc2c(NC(c3cccs3)C3(C)COC3)c(=O)c2=O)c1O nan
44446617 94709 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccsc1 10.1016/j.bmcl.2008.01.024
CHEMBL252898 94709 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccsc1 10.1016/j.bmcl.2008.01.024
71525697 133313 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 425 7 3 8 2.2 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccco3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3704563 133313 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 425 7 3 8 2.2 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccco3)C3(C)COC3)c(=O)c2=O)c1O nan
71526068 145557 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3915145 145557 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
44446645 94872 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 398 7 3 8 2.3 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)on1 10.1016/j.bmcl.2008.01.024
CHEMBL253927 94872 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 398 7 3 8 2.3 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)on1 10.1016/j.bmcl.2008.01.024
10294353 155484 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2008.01.024
CHEMBL404059 155484 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 7 3.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2008.01.024
44446570 166516 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 413 8 4 8 2.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(CO)o1 10.1016/j.bmcl.2008.01.024
CHEMBL427888 166516 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 413 8 4 8 2.1 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(CO)o1 10.1016/j.bmcl.2008.01.024
3618472 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cellsDisplacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cells
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1016/j.ejmech.2019.111853
834 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cellsDisplacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cells
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1016/j.ejmech.2019.111853
CHEMBL280711 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cellsDisplacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cells
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1016/j.ejmech.2019.111853
3618472 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1021/jm034248l
834 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1021/jm034248l
CHEMBL280711 2893 19 None - 0 Human 4.7 pIC50 = 4.7 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccc(cc1O)[N+](=O)[O-])Nc1ccccc1 10.1021/jm034248l
44419477 138059 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 451 4 3 5 3.1 Cc1ccc(N/C(=N/C#N)Nc2ccccc2Br)c(O)c1S(=O)(=O)N(C)C 10.1016/j.bmcl.2006.08.042
CHEMBL376540 138059 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 451 4 3 5 3.1 Cc1ccc(N/C(=N/C#N)Nc2ccccc2Br)c(O)c1S(=O)(=O)N(C)C 10.1016/j.bmcl.2006.08.042
44419558 141772 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 611 8 5 7 4.4 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCC(N)CC1 10.1016/j.bmcl.2006.08.042
CHEMBL386072 141772 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 611 8 5 7 4.4 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCC(N)CC1 10.1016/j.bmcl.2006.08.042
71526065 153169 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 569 9 2 9 4.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC[C@H]4C(=O)OC(C)C)c3F)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3976863 153169 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 569 9 2 9 4.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC[C@H]4C(=O)OC(C)C)c3F)c(=O)c2=O)C2CCCS2)o1 nan
44419480 137484 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 455 4 3 5 2.9 CN(C)S(=O)(=O)c1c(F)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL375393 137484 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 455 4 3 5 2.9 CN(C)S(=O)(=O)c1c(F)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
10201676 155023 0 None - 1 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 411 7 3 6 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccc(F)c1 10.1021/jm0609622
CHEMBL401512 155023 0 None - 1 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 411 7 3 6 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccc(F)c1 10.1021/jm0609622
2812 4779 101 None - 34 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
71720517 87007 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 822 2 2 4 6.0 O=C1OC(c2cc(I)c(O)c(I)c2)(c2c(I)cc(O)cc2I)c2ccccc21 10.1021/jm301749y
CHEMBL2324200 87007 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 822 2 2 4 6.0 O=C1OC(c2cc(I)c(O)c(I)c2)(c2c(I)cc(O)cc2I)c2ccccc21 10.1021/jm301749y
3793 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
71526159 145399 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 525 8 3 9 3.6 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3913959 145399 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 525 8 3 9 3.6 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
2812 4779 101 None - 34 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
9843640 65660 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 395 7 0 5 4.2 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL183425 65660 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 395 7 0 5 4.2 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(F)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
10578242 188410 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 534 7 3 7 4.7 CC(=O)O[C@H]1C2=C([C@H](O)C[C@@]3(C)[C@H]2CC[C@@H]3[C@H](C)CCCC(C)C)[C@@]2(C)CC[C@H](O)C[C@]2(O)[C@H]1OC(C)=O 10.1021/np9904657
CHEMBL501985 188410 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 534 7 3 7 4.7 CC(=O)O[C@H]1C2=C([C@H](O)C[C@@]3(C)[C@H]2CC[C@@H]3[C@H](C)CCCC(C)C)[C@@]2(C)CC[C@H](O)C[C@]2(O)[C@H]1OC(C)=O 10.1021/np9904657
44432416 87388 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 415 3 3 6 4.4 O=S1(=O)N=C(Nc2ccccc2Oc2ccccc2)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
CHEMBL233346 87388 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 415 3 3 6 4.4 O=S1(=O)N=C(Nc2ccccc2Oc2ccccc2)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
71525976 153489 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
CHEMBL3979652 153489 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
3793 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 4.7 pIC50 = 4.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
10112327 126229 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL365008 126229 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
11184341 95154 1 None - 0 Human 4.7 pIC50 = 4.7 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 253 2 3 3 2.9 N#Cc1ccc(NC(=O)Nc2ccccc2)c(O)c1 10.1021/jm034248l
CHEMBL25573 95154 1 None - 0 Human 4.7 pIC50 = 4.7 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 253 2 3 3 2.9 N#Cc1ccc(NC(=O)Nc2ccccc2)c(O)c1 10.1021/jm034248l
44419473 83199 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 626 8 4 7 5.1 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1C[C@H](C)O[C@H](C)C1 10.1016/j.bmcl.2006.08.042
CHEMBL218486 83199 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 626 8 4 7 5.1 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1C[C@H](C)O[C@H](C)C1 10.1016/j.bmcl.2006.08.042
3854666 3501 85 None - 0 Human 7.7 pIC50 = 7.7 Binding
Antagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assayAntagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assay
ChEMBL 351 3 3 4 3.7 O=C(Nc1ccccc1Br)Nc1ccc(cc1O)[N+](=O)[O-] 10.1021/jm300682j
833 3501 85 None - 0 Human 7.7 pIC50 = 7.7 Binding
Antagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assayAntagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assay
ChEMBL 351 3 3 4 3.7 O=C(Nc1ccccc1Br)Nc1ccc(cc1O)[N+](=O)[O-] 10.1021/jm300682j
CHEMBL239767 3501 85 None - 0 Human 7.7 pIC50 = 7.7 Binding
Antagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assayAntagonist activity at CXCR1 assessed as inhibition of CXCL8 binding by cell based assay
ChEMBL 351 3 3 4 3.7 O=C(Nc1ccccc1Br)Nc1ccc(cc1O)[N+](=O)[O-] 10.1021/jm300682j
44419555 141942 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 626 9 5 7 4.5 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCC[C@@H]1C(=O)O 10.1016/j.bmcl.2006.08.042
CHEMBL387136 141942 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 626 9 5 7 4.5 CCC(CC)(NS(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCC[C@@H]1C(=O)O 10.1016/j.bmcl.2006.08.042
44393620 66258 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 322 2 4 3 3.5 O=C(Nc1ccc(O)cc1O)Nc1ccccc1Br 10.1016/j.bmcl.2004.05.080
CHEMBL184637 66258 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 322 2 4 3 3.5 O=C(Nc1ccc(O)cc1O)Nc1ccccc1Br 10.1016/j.bmcl.2004.05.080
71720517 87007 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 822 2 2 4 6.0 O=C1OC(c2cc(I)c(O)c(I)c2)(c2c(I)cc(O)cc2I)c2ccccc21 10.1021/jm301749y
CHEMBL2324200 87007 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 822 2 2 4 6.0 O=C1OC(c2cc(I)c(O)c(I)c2)(c2c(I)cc(O)cc2I)c2ccccc21 10.1021/jm301749y
44446602 94838 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 465 8 3 8 4.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccsc2)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253705 94838 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 465 8 3 8 4.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccsc2)co1 10.1016/j.bmcl.2008.01.024
44446613 155095 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 398 7 3 8 2.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)on1 10.1016/j.bmcl.2008.01.024
CHEMBL401894 155095 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 398 7 3 8 2.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)on1 10.1016/j.bmcl.2008.01.024
71525605 133308 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 479 7 3 9 2.4 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccc4c(c3)OCO4)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3704558 133308 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 479 7 3 9 2.4 CN(C)C(=O)c1cccc(Nc2c(NC(c3ccc4c(c3)OCO4)C3(C)COC3)c(=O)c2=O)c1O nan
10298837 65865 0 None - 0 Human 4.6 pIC50 = 4.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 469 9 0 6 5.8 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Oc5ccccc5)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL183561 65865 0 None - 0 Human 4.6 pIC50 = 4.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 469 9 0 6 5.8 CN1CCN(CCCOc2ccc(-c3cc(-c4ccc(Oc5ccccc5)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
10389383 172178 2 None - 0 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]IL-8 from CXCR1 in human neutrophils incubated for 3 hrs by gamma counting methodDisplacement of [125I]IL-8 from CXCR1 in human neutrophils incubated for 3 hrs by gamma counting method
ChEMBL 456 9 1 5 6.9 CCN(CC)CCCCNc1nc2cc(Cl)c(Cl)cc2nc1-c1cc2ccccc2o1 10.1016/j.ejmech.2019.111853
CHEMBL4473520 172178 2 None - 0 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]IL-8 from CXCR1 in human neutrophils incubated for 3 hrs by gamma counting methodDisplacement of [125I]IL-8 from CXCR1 in human neutrophils incubated for 3 hrs by gamma counting method
ChEMBL 456 9 1 5 6.9 CCN(CC)CCCCNc1nc2cc(Cl)c(Cl)cc2nc1-c1cc2ccccc2o1 10.1016/j.ejmech.2019.111853
16098486 161936 0 None -28 2 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)s1 10.1021/jm0609622
CHEMBL415446 161936 0 None -28 2 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)s1 10.1021/jm0609622
11371755 87971 0 None - 0 Human 4.6 pIC50 = 4.6 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 357 1 3 5 3.3 O=S1(=O)N=C(Nc2ccccc2Cl)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
CHEMBL234186 87971 0 None - 0 Human 4.6 pIC50 = 4.6 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 357 1 3 5 3.3 O=S1(=O)N=C(Nc2ccccc2Cl)Nc2c(O)cc(Cl)cc21 10.1016/j.bmcl.2007.05.011
71555295 132803 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 565 8 3 10 3.8 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC[C@@H]4C(=O)OC(C)(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701187 132803 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 565 8 3 10 3.8 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC[C@@H]4C(=O)OC(C)(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
71525976 153489 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
CHEMBL3979652 153489 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
44446639 155593 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)o1 10.1016/j.bmcl.2008.01.024
CHEMBL404490 155593 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)o1 10.1016/j.bmcl.2008.01.024
10295195 127150 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 412 7 0 6 4.1 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL365671 127150 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 412 7 0 6 4.1 CN1CCN(CCCOc2ccc(-c3nc(-c4ccc(Cl)cc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
71525976 153489 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 10.1021/acs.jmedchem.5b01337
CHEMBL3979652 153489 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 10.1021/acs.jmedchem.5b01337
10200589 94940 0 None -9 2 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1021/jm0609622
CHEMBL254370 94940 0 None -9 2 Human 6.6 pIC50 = 6.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1021/jm0609622
10150526 82943 0 None -79 2 Human 7.6 pIC50 = 7.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 383 7 3 7 2.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1021/jm0609622
CHEMBL218115 82943 0 None -79 2 Human 7.6 pIC50 = 7.6 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 383 7 3 7 2.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1021/jm0609622
9953415 99014 18 None - 0 Human 5.6 pIC50 = 5.6 Binding
Displacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cellsDisplacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cells
ChEMBL 409 2 3 3 4.4 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Br 10.1016/j.ejmech.2019.111853
CHEMBL28009 99014 18 None - 0 Human 5.6 pIC50 = 5.6 Binding
Displacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cellsDisplacement of [125I]IL-8 from CXCR1 (unknown origin) stably expressed in CHO cells
ChEMBL 409 2 3 3 4.4 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Br 10.1016/j.ejmech.2019.111853
9953415 99014 18 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 409 2 3 3 4.4 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Br 10.1021/jm034248l
CHEMBL28009 99014 18 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 409 2 3 3 4.4 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Br 10.1021/jm034248l
71526605 132801 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 4 9 2.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CC[C@@H](O)C4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701185 132801 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 4 9 2.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CC[C@@H](O)C4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
44393592 65514 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1ccc(-c2cc(-c3ccc(Cl)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL183061 65514 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1ccc(-c2cc(-c3ccc(Cl)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
44446567 94734 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)o1 10.1016/j.bmcl.2008.01.024
CHEMBL253051 94734 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Cl)o1 10.1016/j.bmcl.2008.01.024
71526607 132802 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 4 9 2.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CC[C@H](O)C4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701186 132802 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 4 9 2.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CC[C@H](O)C4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
44446635 94816 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 394 7 3 7 2.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccncc1 10.1016/j.bmcl.2008.01.024
CHEMBL253506 94816 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 394 7 3 7 2.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccncc1 10.1016/j.bmcl.2008.01.024
44446614 94707 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 9 1.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1nc(C)no1 10.1016/j.bmcl.2008.01.024
CHEMBL252896 94707 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 399 7 3 9 1.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1nc(C)no1 10.1016/j.bmcl.2008.01.024
44419448 138122 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 499 7 3 6 4.2 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2OCc2ccccc2)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL376621 138122 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 499 7 3 6 4.2 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2OCc2ccccc2)c1O 10.1016/j.bmcl.2006.08.042
8497 2737 57 None -4 2 Human 8.4 pIC50 = 8.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm300682j
9865554 2737 57 None -4 2 Human 8.4 pIC50 = 8.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm300682j
CHEMBL216981 2737 57 None -4 2 Human 8.4 pIC50 = 8.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm300682j
71526345 150326 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 580 8 3 10 3.3 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N4CCN(C)CC4)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3952996 150326 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 580 8 3 10 3.3 Cc1ccc(C(Nc2c(Nc3ccc(Cl)c(S(=O)(=O)N4CCN(C)CC4)c3O)c(=O)c2=O)C2CCCS2)o1 nan
10292991 66715 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 377 7 0 5 4.0 CN1CCN(CCCOc2ccc(-c3cc(-c4ccccc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL185610 66715 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 377 7 0 5 4.0 CN1CCN(CCCOc2ccc(-c3cc(-c4ccccc4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
44393543 12810 0 None - 0 Human 4.5 pIC50 = 4.5 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 369 3 4 3 3.9 NCc1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL1188250 12810 0 None - 0 Human 4.5 pIC50 = 4.5 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 369 3 4 3 3.9 NCc1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL535818 12810 0 None - 0 Human 4.5 pIC50 = 4.5 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 369 3 4 3 3.9 NCc1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
44446611 94681 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccno1 10.1016/j.bmcl.2008.01.024
CHEMBL252698 94681 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccno1 10.1016/j.bmcl.2008.01.024
71525696 133312 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 455 7 3 8 3.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)s1 nan
CHEMBL3704562 133312 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 455 7 3 8 3.0 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)s1 nan
16098485 10411 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 379 6 3 6 2.6 C[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1021/jm0609622
CHEMBL1162935 10411 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 379 6 3 6 2.6 C[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1021/jm0609622
46897163 119083 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Inhibition of CXCR1 (unknown origin) transfected with RBL cellsInhibition of CXCR1 (unknown origin) transfected with RBL cells
ChEMBL 466 7 3 6 3.3 O=C(Nc1ccc(F)cc1)c1ccc(SCc2cc(OC(F)(F)F)ccc2B(O)O)nc1 10.1016/j.bmcl.2015.04.041
CHEMBL3426944 119083 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Inhibition of CXCR1 (unknown origin) transfected with RBL cellsInhibition of CXCR1 (unknown origin) transfected with RBL cells
ChEMBL 466 7 3 6 3.3 O=C(Nc1ccc(F)cc1)c1ccc(SCc2cc(OC(F)(F)F)ccc2B(O)O)nc1 10.1016/j.bmcl.2015.04.041
44393593 65069 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 312 5 0 4 4.0 CN(C)COc1ccc(-c2cc(-c3ccc(F)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL182361 65069 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 312 5 0 4 4.0 CN(C)COc1ccc(-c2cc(-c3ccc(F)cc3)on2)cc1 10.1016/j.bmcl.2004.05.080
71525974 133321 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704570 133321 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
71525345 132808 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 3 9 2.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCOCC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701192 132808 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 481 7 3 9 2.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCOCC4)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
11750288 169573 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 412 2 3 7 2.6 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Br)N2 10.1016/j.bmcl.2007.05.011
CHEMBL443583 169573 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 412 2 3 7 2.6 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Br)N2 10.1016/j.bmcl.2007.05.011
71553689 133315 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 467 8 3 8 3.3 CC(C)c1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
CHEMBL3704565 133315 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 467 8 3 8 3.3 CC(C)c1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
11414633 99569 1 None - 0 Human 4.5 pIC50 = 4.5 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccccc1)Nc1cccc([N+](=O)[O-])c1O 10.1021/jm034248l
CHEMBL283736 99569 1 None - 0 Human 4.5 pIC50 = 4.5 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccccc1)Nc1cccc([N+](=O)[O-])c1O 10.1021/jm034248l
71555288 148515 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 467 7 3 8 3.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCOCC2)o1 nan
CHEMBL3938406 148515 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 467 7 3 8 3.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCOCC2)o1 nan
44446580 94955 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 493 8 3 7 4.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2cccc(Cl)c2)o1 10.1016/j.bmcl.2008.01.024
CHEMBL254516 94955 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 493 8 3 7 4.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2cccc(Cl)c2)o1 10.1016/j.bmcl.2008.01.024
71550940 145652 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 469 7 3 8 3.6 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCSCC2)o1 nan
CHEMBL3915853 145652 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 469 7 3 8 3.6 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCSCC2)o1 nan
16098482 141565 1 None - 0 Human 7.5 pIC50 = 7.5 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 411 7 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)C)o1 10.1021/jm0609622
CHEMBL384889 141565 1 None - 0 Human 7.5 pIC50 = 7.5 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 411 7 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)C)o1 10.1021/jm0609622
44446583 94569 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 527 8 3 7 5.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2cccc(C(F)(F)F)c2)o1 10.1016/j.bmcl.2008.01.024
CHEMBL251890 94569 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 527 8 3 7 5.3 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2cccc(C(F)(F)F)c2)o1 10.1016/j.bmcl.2008.01.024
44446604 94839 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 478 8 3 9 3.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2c(C)noc2C)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253706 94839 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 478 8 3 9 3.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2c(C)noc2C)co1 10.1016/j.bmcl.2008.01.024
71525607 133309 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 7 3 8 2.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC(O)C4)c3)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704559 133309 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 7 3 8 2.3 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N4CCC(O)C4)c3)c(=O)c2=O)C2(C)COC2)o1 nan
8497 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1039/D1MD00058F
9865554 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1039/D1MD00058F
CHEMBL216981 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1039/D1MD00058F
8497 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm0609622
9865554 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm0609622
CHEMBL216981 2737 57 None -4 2 Human 7.4 pIC50 = 7.4 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1021/jm0609622
71526254 144817 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3909470 144817 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
9880342 90271 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 325 5 3 7 2.4 O=c1c(Nc2ccccc2)c(Nc2ccc([N+](=O)[O-])cc2O)c1=O 10.1016/j.ejmech.2020.112872
CHEMBL238510 90271 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 325 5 3 7 2.4 O=c1c(Nc2ccccc2)c(Nc2ccc([N+](=O)[O-])cc2O)c1=O 10.1016/j.ejmech.2020.112872
44419439 84223 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 407 4 3 5 3.0 Cc1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL220860 84223 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 407 4 3 5 3.0 Cc1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
100951623 156473 12 None - 0 Human 5.4 pIC50 = 5.4 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 414 4 3 5 3.2 CC1=CCC[C@H]1NC(=O)Nc1ccc(Cl)c(S(=O)(=O)[C@@]2(C)CCOC2)c1O 10.1021/acs.jmedchem.7b01854
CHEMBL4067429 156473 12 None - 0 Human 5.4 pIC50 = 5.4 Binding
Antagonist activity at CXCR1 (unknown origin)Antagonist activity at CXCR1 (unknown origin)
ChEMBL 414 4 3 5 3.2 CC1=CCC[C@H]1NC(=O)Nc1ccc(Cl)c(S(=O)(=O)[C@@]2(C)CCOC2)c1O 10.1021/acs.jmedchem.7b01854
71526157 151579 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
CHEMBL3963336 151579 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
117627636 154263 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 401 6 3 8 2.3 Cc1ccc(C(Nc2c(NC3=CC=CN(C)C3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3986396 154263 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 401 6 3 8 2.3 Cc1ccc(C(Nc2c(NC3=CC=CN(C)C3O)c(=O)c2=O)C2CCCS2)o1 nan
89534497 124480 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 445 7 3 9 2.6 Cc1ccc([C@H](Nc2c(Nc3csc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3640034 124480 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 445 7 3 9 2.6 Cc1ccc([C@H](Nc2c(Nc3csc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
10291817 123211 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 356 7 0 4 5.0 CN(C)CCCOc1ccc(-c2cc(-c3ccc(Cl)cc3)no2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL361312 123211 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 356 7 0 4 5.0 CN(C)CCCOc1ccc(-c2cc(-c3ccc(Cl)cc3)no2)cc1 10.1016/j.bmcl.2004.05.080
136036241 189123 0 None 158 2 Human 5.4 pIC50 = 5.4 Binding
Displacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase releaseDisplacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase release
ChEMBL 415 7 3 8 4.4 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL510437 189123 0 None 158 2 Human 5.4 pIC50 = 5.4 Binding
Displacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase releaseDisplacement of [125I]CXCL8 from CXCR1 receptor in human PMN assessed as myeloperoxidase release
ChEMBL 415 7 3 8 4.4 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)o1 10.1016/j.bmcl.2009.01.027
44419546 84561 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 461 4 3 5 3.7 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2C(F)(F)F)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL222075 84561 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 461 4 3 5 3.7 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2C(F)(F)F)c1O 10.1016/j.bmcl.2006.08.042
44447608 94546 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc2ccccc2o1 10.1016/j.bmcl.2008.01.024
CHEMBL251811 94546 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 7 3 7 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc2ccccc2o1 10.1016/j.bmcl.2008.01.024
71526342 144187 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 9 3 10 2.9 COC(=O)CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3904195 144187 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 9 3 10 2.9 COC(=O)CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
11245544 98248 3 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 365 2 3 3 4.3 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Cl 10.1021/jm034248l
CHEMBL27446 98248 3 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 365 2 3 3 4.3 N#Cc1ccc(NC(=O)Nc2ccccc2Br)c(O)c1Cl 10.1021/jm034248l
71526067 143900 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3901913 143900 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
9868309 65586 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 447 4 3 4 3.7 CN(C)S(=O)(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL183222 65586 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 447 4 3 4 3.7 CN(C)S(=O)(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
71525977 150204 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
44393537 161763 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1ccccc1-c1cc(-c2ccc(Cl)cc2)on1 10.1016/j.bmcl.2004.05.080
CHEMBL413959 161763 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1ccccc1-c1cc(-c2ccc(Cl)cc2)on1 10.1016/j.bmcl.2004.05.080
11798740 187876 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 474 6 2 5 5.2 CC(=O)O[C@H]1C=C2[C@@H]3CC[C@H]([C@H](C)CCCC(C)C)[C@@]3(C)C[C@H]3O[C@@]23[C@@]2(C)CC[C@H](O)C[C@]12O 10.1021/np9904657
CHEMBL496452 187876 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 474 6 2 5 5.2 CC(=O)O[C@H]1C=C2[C@@H]3CC[C@H]([C@H](C)CCCC(C)C)[C@@]3(C)C[C@H]3O[C@@]23[C@@]2(C)CC[C@H](O)C[C@]12O 10.1021/np9904657
5280343 188275 124 None - 32 Human 5.4 pIC50 = 5.4 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
CHEMBL1520590 188275 124 None - 32 Human 5.4 pIC50 = 5.4 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
CHEMBL50 188275 124 None - 32 Human 5.4 pIC50 = 5.4 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
71525977 150204 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
11818139 94095 2 None - 0 Human 4.3 pIC50 = 4.3 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccccc1)Nc1cc([N+](=O)[O-])ccc1O 10.1021/jm034248l
CHEMBL24912 94095 2 None - 0 Human 4.3 pIC50 = 4.3 Binding
Inhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligandInhibition of binding of IL-8 to membranes of cloned CXC chemokine receptor 1 expressed in CHO Cells using [125I]IL-8 radioligand
ChEMBL 273 3 3 4 2.9 O=C(Nc1ccccc1)Nc1cc([N+](=O)[O-])ccc1O 10.1021/jm034248l
44446566 94733 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Br)o1 10.1016/j.bmcl.2008.01.024
CHEMBL253050 94733 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(Br)o1 10.1016/j.bmcl.2008.01.024
71526161 148001 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 439 7 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@@H]2CCCO2)o1 nan
CHEMBL3934321 148001 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 439 7 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@@H]2CCCO2)o1 nan
44446577 155294 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 493 8 3 7 4.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2ccccc2Cl)o1 10.1016/j.bmcl.2008.01.024
CHEMBL402952 155294 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 493 8 3 7 4.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(-c2ccccc2Cl)o1 10.1016/j.bmcl.2008.01.024
71525422 132809 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 383 6 2 8 1.8 Cc1ccc(C(Nc2c(Nc3cccn(C)c3=O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701193 132809 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 383 6 2 8 1.8 Cc1ccc(C(Nc2c(Nc3cccn(C)c3=O)c(=O)c2=O)C2(C)COC2)o1 nan
3793 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
5280343 188275 124 None - 32 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
CHEMBL1520590 188275 124 None - 32 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
CHEMBL50 188275 124 None - 32 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 302 1 5 7 2.0 O=c1c(O)c(-c2ccc(O)c(O)c2)oc2cc(O)cc(O)c12 10.1021/jm301749y
3793 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
45039617 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
CHEMBL64391 203209 77 None - 1 Human 5.3 pIC50 = 5.3 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with centrifuged compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 704 11 0 12 5.6 CCC(C)n1ncn(-c2ccc(N3CCN(c4ccc(OCC5COC(Cn6cncn6)(c6ccc(Cl)cc6Cl)O5)cc4)CC3)cc2)c1=O 10.1021/jm301749y
134135498 144013 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3902863 144013 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
44419411 141849 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 421 5 3 5 3.2 CCc1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL386505 141849 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 421 5 3 5 3.2 CCc1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
71525701 133317 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 403 6 3 8 2.9 Cc1ccc(C(Nc2c(Nc3ccc(Cl)nc3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704567 133317 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 403 6 3 8 2.9 Cc1ccc(C(Nc2c(Nc3ccc(Cl)nc3O)c(=O)c2=O)C2(C)COC2)o1 nan
44446598 155102 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 460 8 3 8 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccncc2)co1 10.1016/j.bmcl.2008.01.024
CHEMBL401938 155102 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 460 8 3 8 3.7 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(-c2ccncc2)co1 10.1016/j.bmcl.2008.01.024
44393538 66176 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 334 5 0 4 4.8 c1ccc(-c2cc(-c3ccc(OCN4CCCCC4)cc3)no2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL184319 66176 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 334 5 0 4 4.8 c1ccc(-c2cc(-c3ccc(OCN4CCCCC4)cc3)no2)cc1 10.1016/j.bmcl.2004.05.080
71555444 149193 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 7 3 8 2.9 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCOCC2)o1 nan
CHEMBL3943808 149193 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the beta -arrestin recruitment after receptor activation type.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 beta -arrestin line results in the recruitment of beta -arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation.>>J. Immunol. 170: 2904-2911).In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with beta -arrestin 2, a beta -arrestin 2 recruitment test for CXCR2 or CXCR1 based on beta -galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 7 3 8 2.9 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCOCC2)o1 nan
9912703 83182 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 471 4 3 5 3.4 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL218387 83182 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 471 4 3 5 3.4 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2006.08.042
16098487 82113 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 409 7 3 7 2.9 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CC2)o1 10.1021/jm0609622
CHEMBL216603 82113 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 409 7 3 7 2.9 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CC2)o1 10.1021/jm0609622
25110787 155103 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
CHEMBL401939 155103 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
10555185 172836 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 576 8 2 8 5.3 CC(=O)O[C@H]1CC[C@]2(C)C3=C([C@H](OC(C)=O)[C@H](OC(C)=O)[C@@]2(O)C1)[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)C[C@H]3O 10.1021/np9904657
CHEMBL451438 172836 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Displacement of [125I]IL8 from human recombinant IL8 type A receptorDisplacement of [125I]IL8 from human recombinant IL8 type A receptor
ChEMBL 576 8 2 8 5.3 CC(=O)O[C@H]1CC[C@]2(C)C3=C([C@H](OC(C)=O)[C@H](OC(C)=O)[C@@]2(O)C1)[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)C[C@H]3O 10.1021/np9904657
71526250 142651 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)[C@H]3CCCS3)c(=O)c2=O)c1F nan
CHEMBL3891755 142651 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)[C@H]3CCCS3)c(=O)c2=O)c1F nan
71525511 133306 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 8 3 8 2.6 COc1cccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
CHEMBL3704556 133306 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 8 3 8 2.6 COc1cccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
71525885 133319 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 507 8 3 8 3.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704569 133319 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 507 8 3 8 3.5 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
44446569 94735 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 8 3 7 3.5 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C(F)F)o1 10.1016/j.bmcl.2008.01.024
CHEMBL253052 94735 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 433 8 3 7 3.5 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C(F)F)o1 10.1016/j.bmcl.2008.01.024
134149652 148202 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 11 4 11 2.6 COC(=O)CNCC(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3935902 148202 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 11 4 11 2.6 COC(=O)CNCC(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
44419483 83254 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 564 8 4 7 3.6 CCC(CC)(NS(=O)(=O)c1cccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCOCC1 10.1016/j.bmcl.2006.08.042
CHEMBL218744 83254 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 564 8 4 7 3.6 CCC(CC)(NS(=O)(=O)c1cccc(N/C(=N/C#N)Nc2ccccc2Br)c1O)N1CCOCC1 10.1016/j.bmcl.2006.08.042
10200589 94940 0 None -9 2 Human 8.2 pIC50 = 8.2 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.ejmech.2020.112872
CHEMBL254370 94940 0 None -9 2 Human 8.2 pIC50 = 8.2 Binding
Inhibition of human CXCR1Inhibition of human CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.ejmech.2020.112872
44393748 124361 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 445 7 0 5 5.0 CN1CCN(CCCOc2ccc(-c3cc(-c4cccc(C(F)(F)F)c4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL363746 124361 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 445 7 0 5 5.0 CN1CCN(CCCOc2ccc(-c3cc(-c4cccc(C(F)(F)F)c4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
44393541 66150 1 None - 0 Human 5.2 pIC50 = 5.2 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 383 3 4 3 3.6 NC(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
CHEMBL184185 66150 1 None - 0 Human 5.2 pIC50 = 5.2 Binding
Concentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cellsConcentration required to inhibit [125I]-IL-8 binding towards C-X-C chemokine receptor type 1 of human expressed in CHO cells
ChEMBL 383 3 4 3 3.6 NC(=O)c1c(Cl)ccc(NC(=O)Nc2ccccc2Br)c1O 10.1016/j.bmcl.2004.06.097
71525884 132804 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3701188 132804 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
44446568 155536 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 451 7 3 7 3.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C(F)(F)F)o1 10.1016/j.bmcl.2008.01.024
CHEMBL404250 155536 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 451 7 3 7 3.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C(F)(F)F)o1 10.1016/j.bmcl.2008.01.024
44446641 94843 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Cl)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253714 94843 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 417 7 3 7 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Cl)co1 10.1016/j.bmcl.2008.01.024
44393699 66616 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 349 5 0 5 3.6 CN1CCN(COc2ccc(-c3cc(-c4ccccc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL185268 66616 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 349 5 0 5 3.6 CN1CCN(COc2ccc(-c3cc(-c4ccccc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
16126703 84240 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 445 4 3 5 3.4 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2cccc(Cl)c2F)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL221039 84240 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 445 4 3 5 3.4 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2cccc(Cl)c2F)c1O 10.1016/j.bmcl.2006.08.042
117647858 133322 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 8 3 8 2.9 CCN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3704571 133322 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 453 8 3 8 2.9 CCN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
71525421 132805 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 412 7 4 8 2.9 Cc1ccc(C(Nc2c(Nc3cccc(C(C)O)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701189 132805 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 412 7 4 8 2.9 Cc1ccc(C(Nc2c(Nc3cccc(C(C)O)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
71526252 149719 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 385 6 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccnc3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3947915 149719 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 385 6 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccnc3O)c(=O)c2=O)C2CCCS2)o1 nan
71525977 150204 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
71525423 132810 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 369 6 3 8 2.2 Cc1ccc(C(Nc2c(Nc3cccnc3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701194 132810 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 369 6 3 8 2.2 Cc1ccc(C(Nc2c(Nc3cccnc3O)c(=O)c2=O)C2(C)COC2)o1 nan
71556114 124474 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3640000 124474 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
10293321 94703 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 383 7 3 7 2.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.bmcl.2008.01.024
CHEMBL252851 94703 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 383 7 3 7 2.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.bmcl.2008.01.024
9836859 66083 6 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 322 7 0 4 4.3 CN(C)CCCOc1ccc(-c2cc(-c3ccccc3)no2)cc1 10.1016/j.bmcl.2004.05.080
CHEMBL183819 66083 6 None - 0 Human 5.2 pIC50 = 5.2 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 322 7 0 4 4.3 CN(C)CCCOc1ccc(-c2cc(-c3ccccc3)no2)cc1 10.1016/j.bmcl.2004.05.080
71525977 150204 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
10310100 93476 42 None -3 2 Human 8.1 pIC50 = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 425 8 3 7 3.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.04.016
CHEMBL246108 93476 42 None -3 2 Human 8.1 pIC50 = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 425 8 3 7 3.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.04.016
44446610 155094 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 400 7 3 8 2.5 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1nccs1 10.1016/j.bmcl.2008.01.024
CHEMBL401893 155094 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 400 7 3 8 2.5 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1nccs1 10.1016/j.bmcl.2008.01.024
71526066 144414 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 555 9 2 9 4.3 CCOC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
CHEMBL3906175 144414 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 555 9 2 9 4.3 CCOC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
44419412 83170 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 435 5 3 5 3.8 CC(C)c1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL218334 83170 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 435 5 3 5 3.8 CC(C)c1ccccc1N/C(=N\C#N)Nc1ccc(Cl)c(S(=O)(=O)N(C)C)c1O 10.1016/j.bmcl.2006.08.042
71525886 133325 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1ccc([C@@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704574 133325 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1ccc([C@@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
44419449 166106 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 469 5 3 5 4.3 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2-c2ccccc2)c1O 10.1016/j.bmcl.2006.08.042
CHEMBL425985 166106 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Displacement of [125I]IL8 from CXCR1 expressed in CHO cellsDisplacement of [125I]IL8 from CXCR1 expressed in CHO cells
ChEMBL 469 5 3 5 4.3 CN(C)S(=O)(=O)c1c(Cl)ccc(N/C(=N/C#N)Nc2ccccc2-c2ccccc2)c1O 10.1016/j.bmcl.2006.08.042
11304851 154605 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 426 4 3 8 3.7 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Oc1ccccc1)N2 10.1016/j.bmcl.2007.05.011
CHEMBL399203 154605 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Displacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cellsDisplacement of human recombinant [125I]IL8 from CXCR1 receptor expressed in CHO cells
ChEMBL 426 4 3 8 3.7 O=[N+]([O-])c1cc(O)c2c(c1)S(=O)(=O)N=C(Nc1ccccc1Oc1ccccc1)N2 10.1016/j.bmcl.2007.05.011
9968185 66386 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 348 5 0 4 4.7 CN1CCC(COc2ccc(-c3cc(-c4ccccc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL185176 66386 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 348 5 0 4 4.7 CN1CCC(COc2ccc(-c3cc(-c4ccccc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
71525698 133314 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
CHEMBL3704564 133314 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
71525977 150204 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3951994 150204 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 455 7 3 8 3.4 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CCCS2)o1 nan
16098481 82112 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 383 6 3 7 2.5 Cc1ccc([C@@H](C)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)o1 10.1021/jm0609622
CHEMBL216602 82112 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 383 6 3 7 2.5 Cc1ccc([C@@H](C)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)o1 10.1021/jm0609622
2812 4779 101 None - 34 Human 5.1 pIC50 = 5.1 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.1 pIC50 = 5.1 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
2812 4779 101 None - 34 Human 5.1 pIC50 = 5.1 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
CHEMBL104 4779 101 None - 34 Human 5.1 pIC50 = 5.1 Binding
Inhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assayInhibition of CX3CL1-stimulated CX3CR1 in human HTLA cells pre-incubated for 20 mins with Tween-80-treated compound solution measured on day 4 by beta arrestin-recruitment mediated luciferase reporter gene assay
ChEMBL 344 4 0 2 5.4 Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 10.1021/jm301749y
44446607 167612 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ncco1 10.1016/j.bmcl.2008.01.024
CHEMBL430116 167612 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ncco1 10.1016/j.bmcl.2008.01.024
44446608 94680 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cocn1 10.1016/j.bmcl.2008.01.024
CHEMBL252697 94680 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 384 7 3 8 2.0 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cocn1 10.1016/j.bmcl.2008.01.024
10272255 141715 0 None -41 2 Human 7.1 pIC50 = 7.1 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1021/jm0609622
CHEMBL385715 141715 0 None -41 2 Human 7.1 pIC50 = 7.1 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1021/jm0609622
44393569 66243 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1cccc(-c2cc(-c3ccc(Cl)cc3)on2)c1 10.1016/j.bmcl.2004.05.080
CHEMBL184583 66243 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 328 5 0 4 4.6 CN(C)COc1cccc(-c2cc(-c3ccc(Cl)cc3)on2)c1 10.1016/j.bmcl.2004.05.080
78098584 143742 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)C1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
CHEMBL3900726 143742 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)C1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1F nan
44446616 94708 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 383 7 3 7 2.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccoc1 10.1016/j.bmcl.2008.01.024
CHEMBL252897 94708 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 383 7 3 7 2.6 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccoc1 10.1016/j.bmcl.2008.01.024
71525976 153489 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
CHEMBL3979652 153489 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 453 7 3 8 3.1 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)CCCO2)o1 nan
71525698 133314 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
CHEMBL3704564 133314 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 439 7 3 8 2.5 Cc1coc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)c1 nan
71526254 144817 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
CHEMBL3909470 144817 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 523 8 3 8 4.3 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)CC(F)(F)F)c3O)c(=O)c2=O)C2CCCS2)o1 nan
44446565 94704 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 411 8 3 7 3.2 CCc1ccc(C(CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)o1 10.1016/j.bmcl.2008.01.024
CHEMBL252852 94704 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 411 8 3 7 3.2 CCc1ccc(C(CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)o1 10.1016/j.bmcl.2008.01.024
71526067 143900 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3901913 143900 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 539 8 3 10 3.5 COC(=O)[C@H]1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
134149652 148202 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 11 4 11 2.6 COC(=O)CNCC(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
CHEMBL3935902 148202 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 513 11 4 11 2.6 COC(=O)CNCC(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3CCCS3)c(=O)c2=O)c1O nan
44393659 66690 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 397 6 0 5 4.3 CN1CCN(CCOc2ccc(-c3cc(-c4ccc(Cl)cc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL185476 66690 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 397 6 0 5 4.3 CN1CCN(CCOc2ccc(-c3cc(-c4ccc(Cl)cc4)on3)cc2)CC1 10.1016/j.bmcl.2004.05.080
134151106 152179 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@H](c3ccc(C)o3)[C@@H]3CCCS3)c(=O)c2=O)c1F nan
CHEMBL3968340 152179 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).In Vitro Affinity Assay: â¿¿PathHunter HEK293-CXCR2⿝ or â¿¿U2OS hCXCR1 β-arrestin⿝ cells (DiscoveRx Corporation) were seeded overnight at 10 000 cells/well (384-well format) in 20 μl of Opti MEM I medium. A preincubation with the antagonist or the vehicle for 30 min at 37° C. and 5% CO2 was followed by 60 minutes of stimulation with CXCL8 at 37° C. and 5% CO2. The cells were then placed at ambient temperature for 30 minutes. The PathHunter detection reagent (DiscoveRx Corporation) was added. After incubation for 60 min at ambient temperature, the β-galactosidase induced by the luminescence during the β-arrestin-CXCR2 interaction was measured for 0.3 s in an Envision 2102 Multilabel Reader (PerkinElmer Life and Analytical Sciences).
ChEMBL 541 8 2 9 3.9 COC(=O)[C@@H]1CCCN1C(=O)c1cccc(Nc2c(N[C@H](c3ccc(C)o3)[C@@H]3CCCS3)c(=O)c2=O)c1F nan
71525975 133323 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 473 7 3 8 3.2 Cc1ccc([C@H](Nc2c(Nc3ccc(Cl)c(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704572 133323 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 473 7 3 8 3.2 Cc1ccc([C@H](Nc2c(Nc3ccc(Cl)c(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
46897162 3716 11 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1 (unknown origin) transfected with RBL cellsInhibition of CXCR1 (unknown origin) transfected with RBL cells
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1016/j.bmcl.2015.04.041
8501 3716 11 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1 (unknown origin) transfected with RBL cellsInhibition of CXCR1 (unknown origin) transfected with RBL cells
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1016/j.bmcl.2015.04.041
CHEMBL3342269 3716 11 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1 (unknown origin) transfected with RBL cellsInhibition of CXCR1 (unknown origin) transfected with RBL cells
ChEMBL 382 6 3 5 2.4 Fc1ccc(cc1)NC(=O)c1ccc(nc1)SCc1ccccc1B(O)O 10.1016/j.bmcl.2015.04.041
9968028 83292 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 345 7 3 6 2.0 CCC(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1021/jm0609622
CHEMBL218964 83292 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Displacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cellsDisplacement of [125I]hCXCL8 from human CXCR1 receptor expressed in BaF3 cells
ChEMBL 345 7 3 6 2.0 CCC(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1021/jm0609622
25110787 155103 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1-mediated chemotaxis in Ba/F3 cells expressing human CXCR1Inhibition of CXCR1-mediated chemotaxis in Ba/F3 cells expressing human CXCR1
ChEMBL 461 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
CHEMBL401939 155103 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Inhibition of CXCR1-mediated chemotaxis in Ba/F3 cells expressing human CXCR1Inhibition of CXCR1-mediated chemotaxis in Ba/F3 cells expressing human CXCR1
ChEMBL 461 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
44446595 94811 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
CHEMBL253498 94811 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 461 7 3 7 3.4 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(Br)co1 10.1016/j.bmcl.2008.01.024
10158569 125048 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4cccc(Cl)c4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
CHEMBL364397 125048 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Inhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligandInhibitory concentration against interleukin-8 receptor of human neutrophils by using [125I]IL-8 (0.125 nM) as radioligand
ChEMBL 411 7 0 5 4.7 CN1CCN(CCCOc2ccc(-c3cc(-c4cccc(Cl)c4)no3)cc2)CC1 10.1016/j.bmcl.2004.05.080
21037713 155535 9 None - 0 Human 7.0 pIC50 = 7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 397 7 3 7 2.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)o1 10.1016/j.bmcl.2008.01.024
CHEMBL404249 155535 9 None - 0 Human 7.0 pIC50 = 7 Binding
Inhibition of CXCR1Inhibition of CXCR1
ChEMBL 397 7 3 7 2.9 CCC(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)o1 10.1016/j.bmcl.2008.01.024
71555297 132806 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 438 8 3 8 3.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)C(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3701190 132806 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 438 8 3 8 3.7 Cc1ccc(C(Nc2c(Nc3cccc(C(=O)C(C)C)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
71525512 133307 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 8 3 8 2.6 COc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)cc1 nan
CHEMBL3704557 133307 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 465 8 3 8 2.6 COc1ccc(C(Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2(C)COC2)cc1 nan
71525608 133310 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)C1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
CHEMBL3704560 133310 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 523 8 3 10 2.6 COC(=O)C1CCCN1C(=O)c1cccc(Nc2c(NC(c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c1O nan
71525700 133316 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 399 7 3 9 2.2 COc1ccc(Nc2c(NC(c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c(O)n1 nan
CHEMBL3704566 133316 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 399 7 3 9 2.2 COc1ccc(Nc2c(NC(c3ccc(C)o3)C3(C)COC3)c(=O)c2=O)c(O)n1 nan
71525795 133318 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 393 6 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C#N)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
CHEMBL3704568 133318 0 None - 0 Human 5.0 pIC50 = 5 Binding
In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).In Vitro Assay: The in vitro affinity of the compounds of the present invention for the CXCR1 and CXCR2 receptors was determined on a functional test of the .beta.-arrestin recruitment type after receptor activation.It was demonstrated that the activation by CXCL8 of the CXCR2 receptor in cells of the PathHunter HEK293-CXCR2 line or of the CXCR1 receptor in cells of the U2OS h CXCR1 .beta.-arrestin line results in the recruitment of .beta.-arrestin (Richardson et al. 2003 Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170: 2904-2911.)In order to evaluate the direct interaction of the CXCR2 or CXCR1 receptor with .beta.-arrestin 2, a .beta.-arrestin 2 recruitment test for CXCR2 or CXCR1 based on of .beta.-galactosidase enzyme complementation (Olson K R, Eglen R M. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol. 2007 February; 5(1); 137-44).
ChEMBL 393 6 3 8 2.7 Cc1ccc(C(Nc2c(Nc3cccc(C#N)c3O)c(=O)c2=O)C2(C)COC2)o1 nan
10150526 82943 0 None -79 2 Human 8.4 pKd = 8.4 Binding
Binding affinity to human CXCR1 assessed as dissociation constant incubated for 6 to 24 hrs by radioligand binding assayBinding affinity to human CXCR1 assessed as dissociation constant incubated for 6 to 24 hrs by radioligand binding assay
ChEMBL 383 7 3 7 2.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.ejmech.2020.112872
CHEMBL218115 82943 0 None -79 2 Human 8.4 pKd = 8.4 Binding
Binding affinity to human CXCR1 assessed as dissociation constant incubated for 6 to 24 hrs by radioligand binding assayBinding affinity to human CXCR1 assessed as dissociation constant incubated for 6 to 24 hrs by radioligand binding assay
ChEMBL 383 7 3 7 2.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.ejmech.2020.112872
44565052 193229 0 None -2 2 Human 8.0 pKi = 8 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 487 7 3 7 3.7 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.033
CHEMBL523645 193229 0 None -2 2 Human 8.0 pKi = 8 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 487 7 3 7 3.7 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.033
10252538 93720 0 None -3 2 Human 8.0 pKi = 8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 437 8 3 7 3.7 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CC2)c1 10.1016/j.bmcl.2007.04.016
CHEMBL247150 93720 0 None -3 2 Human 8.0 pKi = 8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 437 8 3 7 3.7 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C2CC2)c1 10.1016/j.bmcl.2007.04.016
10343142 149851 0 None -2 2 Human 8.0 pKi = 8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 7 3 7 3.9 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)(C)C)co1 10.1016/j.bmcl.2007.04.016
CHEMBL394899 149851 0 None -2 2 Human 8.0 pKi = 8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 7 3 7 3.9 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)(C)C)co1 10.1016/j.bmcl.2007.04.016
44564898 179286 0 None -19 2 Human 7.0 pKi = 7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 437 7 3 7 3.1 CN(C)C(=O)c1cccc(Nc2c(N[C@H](CC(F)(F)F)c3ccco3)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL473145 179286 0 None -19 2 Human 7.0 pKi = 7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 437 7 3 7 3.1 CN(C)C(=O)c1cccc(Nc2c(N[C@H](CC(F)(F)F)c3ccco3)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
136036524 94746 0 None -660 2 Human 5.0 pKi = 5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 6 3 9 2.7 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2NCc2ccc3c(c2)OCO3)c1O 10.1016/j.bmcl.2007.10.094
136097523 94746 0 None -660 2 Human 5.0 pKi = 5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 6 3 9 2.7 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2NCc2ccc3c(c2)OCO3)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL253104 94746 0 None -660 2 Human 5.0 pKi = 5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 6 3 9 2.7 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2NCc2ccc3c(c2)OCO3)c1O 10.1016/j.bmcl.2007.10.094
44565099 193253 0 None -20 2 Human 7.0 pKi = 7.0 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 491 6 3 7 4.0 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3cc(Cl)c(Cl)o3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL523807 193253 0 None -20 2 Human 7.0 pKi = 7.0 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 491 6 3 7 4.0 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3cc(Cl)c(Cl)o3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
10252630 93719 0 None -2 2 Human 8.0 pKi = 8.0 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 8 3 7 4.0 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)C)c1 10.1016/j.bmcl.2007.04.016
CHEMBL247149 93719 0 None -2 2 Human 8.0 pKi = 8.0 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 8 3 7 4.0 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)C)c1 10.1016/j.bmcl.2007.04.016
136036520 94837 0 None -6 2 Human 6.0 pKi = 6.0 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 459 5 3 7 2.6 Cc1ccc([C@H](NC2=NS(=O)(=O)N=C2Nc2cccc(C(=O)N(C)C)c2O)C2(C)CC2)o1 10.1016/j.bmcl.2007.10.094
CHEMBL253702 94837 0 None -6 2 Human 6.0 pKi = 6.0 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 459 5 3 7 2.6 Cc1ccc([C@H](NC2=NS(=O)(=O)N=C2Nc2cccc(C(=O)N(C)C)c2O)C2(C)CC2)o1 10.1016/j.bmcl.2007.10.094
135814569 94781 0 None -245 2 Human 5.9 pKi = 5.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 413 7 3 7 3.9 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2007.10.094
136036525 94781 0 None -245 2 Human 5.9 pKi = 5.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 413 7 3 7 3.9 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2007.10.094
CHEMBL253304 94781 0 None -245 2 Human 5.9 pKi = 5.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 413 7 3 7 3.9 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2007.10.094
45271151 195230 0 None -24 2 Human 5.9 pKi = 5.9 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 433 7 3 7 3.7 CC[C@@H](Nc1c(Nc2cc(Cl)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
CHEMBL550880 195230 0 None -24 2 Human 5.9 pKi = 5.9 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 433 7 3 7 3.7 CC[C@@H](Nc1c(Nc2cc(Cl)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
44440859 93358 0 None -12 2 Human 6.9 pKi = 6.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1sccc1C 10.1016/j.bmcl.2007.04.016
CHEMBL245500 93358 0 None -12 2 Human 6.9 pKi = 6.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1sccc1C 10.1016/j.bmcl.2007.04.016
10180509 196255 0 None -11 2 Human 6.9 pKi = 6.9 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 421 8 3 6 3.8 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL561812 196255 0 None -11 2 Human 6.9 pKi = 6.9 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 421 8 3 6 3.8 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
136036234 187004 0 None 79 2 Human 6.9 pKi = 6.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 483 6 3 9 4.7 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)OCCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL490688 187004 0 None 79 2 Human 6.9 pKi = 6.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 483 6 3 9 4.7 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)OCCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
136036522 155310 0 None -14 2 Human 6.9 pKi = 6.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 481 4 3 7 3.2 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc(Cl)o2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL403023 155310 0 None -14 2 Human 6.9 pKi = 6.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 481 4 3 7 3.2 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc(Cl)o2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
136036250 176939 0 None 8 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 468 8 3 9 5.1 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)CCC#N)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL462155 176939 0 None 8 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 468 8 3 9 5.1 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)CCC#N)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
136036236 190692 0 None 234 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 401 7 3 8 4.2 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL518201 190692 0 None 234 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 401 7 3 8 4.2 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.027
136036527 94782 0 None -32 2 Human 6.9 pKi = 6.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 441 6 3 7 4.6 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccccc2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
136097465 94782 0 None -32 2 Human 6.9 pKi = 6.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 441 6 3 7 4.6 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccccc2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL253305 94782 0 None -32 2 Human 6.9 pKi = 6.9 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 441 6 3 7 4.6 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccccc2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
135497124 174479 0 None 6 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 429 6 3 8 4.8 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL455431 174479 0 None 6 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 429 6 3 8 4.8 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
136036252 176959 0 None 3 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 454 8 3 9 4.8 CN(CCC#N)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL462331 176959 0 None 3 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 454 8 3 9 4.8 CN(CCC#N)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
136036244 177535 0 None 91 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 431 7 3 8 4.9 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)s1 10.1016/j.bmcl.2009.01.027
CHEMBL464012 177535 0 None 91 2 Human 7.9 pKi = 7.9 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 431 7 3 8 4.9 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)s1 10.1016/j.bmcl.2009.01.027
10481927 93475 0 None -1 2 Human 7.9 pKi = 7.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 524 12 3 9 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(CCCCN2CCOCC2)co1 10.1016/j.bmcl.2007.04.016
CHEMBL246107 93475 0 None -1 2 Human 7.9 pKi = 7.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 524 12 3 9 3.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(CCCCN2CCOCC2)co1 10.1016/j.bmcl.2007.04.016
44440873 93759 1 None -3 2 Human 7.9 pKi = 7.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 453 7 3 7 4.3 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)C)c1 10.1016/j.bmcl.2007.04.016
CHEMBL247356 93759 1 None -3 2 Human 7.9 pKi = 7.9 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 453 7 3 7 4.3 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)C)c1 10.1016/j.bmcl.2007.04.016
16098486 161936 0 None -28 2 Human 6.8 pKi = 6.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)s1 10.1016/j.bmcl.2007.04.016
CHEMBL415446 161936 0 None -28 2 Human 6.8 pKi = 6.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)s1 10.1016/j.bmcl.2007.04.016
136036242 189011 0 None 25 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 415 6 3 8 4.5 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL508938 189011 0 None 25 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 415 6 3 8 4.5 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
136036241 189123 0 None 158 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 415 7 3 8 4.4 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL510437 189123 0 None 158 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 415 7 3 8 4.4 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)o1 10.1016/j.bmcl.2009.01.027
44564941 189511 0 None -1 2 Human 7.8 pKi = 7.8 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 415 7 3 7 2.8 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H](C)F)o1 10.1016/j.bmcl.2009.01.033
CHEMBL514001 189511 0 None -1 2 Human 7.8 pKi = 7.8 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 415 7 3 7 2.8 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H](C)F)o1 10.1016/j.bmcl.2009.01.033
136036256 176929 0 None 128 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 409 7 3 7 4.3 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccccc2)C2CC2)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL462024 176929 0 None 128 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 409 7 3 7 4.3 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccccc2)C2CC2)c1O 10.1016/j.bmcl.2009.01.027
10412163 169454 0 None -2 2 Human 7.8 pKi = 7.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 465 7 3 7 3.9 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)F)c1 10.1016/j.bmcl.2007.04.016
CHEMBL442799 169454 0 None -2 2 Human 7.8 pKi = 7.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 465 7 3 7 3.9 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)F)c1 10.1016/j.bmcl.2007.04.016
136036245 191030 0 None 70 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 471 6 3 9 4.6 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N3CCOCC3)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL518696 191030 0 None 70 2 Human 7.8 pKi = 7.8 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 471 6 3 9 4.6 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N3CCOCC3)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
8497 2737 57 None -4 2 Human 7.8 pKi = 7.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2007.04.016
9865554 2737 57 None -4 2 Human 7.8 pKi = 7.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2007.04.016
CHEMBL216981 2737 57 None -4 2 Human 7.8 pKi = 7.8 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2007.04.016
136036521 94871 0 None -11 2 Human 6.7 pKi = 6.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 6 3 7 2.9 CCC(C)(C)[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccco1 10.1016/j.bmcl.2007.10.094
CHEMBL253922 94871 0 None -11 2 Human 6.7 pKi = 6.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 6 3 7 2.9 CCC(C)(C)[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccco1 10.1016/j.bmcl.2007.10.094
8497 2737 57 None -4 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2009.01.033
9865554 2737 57 None -4 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2009.01.033
CHEMBL216981 2737 57 None -4 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 397 7 3 7 2.9 CC[C@H](c1ccc(o1)C)NC1=C(C(=O)C1=O)Nc1cccc(c1O)C(=O)N(C)C 10.1016/j.bmcl.2009.01.033
44565100 187057 0 None -3 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 457 6 3 7 3.4 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3cc(Cl)co3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL491135 187057 0 None -3 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 457 6 3 7 3.4 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3cc(Cl)co3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
136036255 176911 0 None 204 2 Human 7.7 pKi = 7.7 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 433 7 3 7 4.5 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(F)cc(F)c1 10.1016/j.bmcl.2009.01.027
CHEMBL461816 176911 0 None 204 2 Human 7.7 pKi = 7.7 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 433 7 3 7 4.5 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(F)cc(F)c1 10.1016/j.bmcl.2009.01.027
136036517 155570 0 None -83 2 Human 5.7 pKi = 5.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 515 4 3 8 2.7 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc3c(c2)OCCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL404381 155570 0 None -83 2 Human 5.7 pKi = 5.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 515 4 3 8 2.7 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc3c(c2)OCCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
45272873 196431 0 None -33 2 Human 5.7 pKi = 5.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 477 7 3 7 3.8 CC[C@@H](Nc1c(Nc2cc(Br)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
CHEMBL562950 196431 0 None -33 2 Human 5.7 pKi = 5.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 477 7 3 7 3.8 CC[C@@H](Nc1c(Nc2cc(Br)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
136036532 155392 0 None -9 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 431 6 3 8 4.1 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
136097489 155392 0 None -9 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 431 6 3 8 4.1 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL403547 155392 0 None -9 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 431 6 3 8 4.1 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
135814570 177909 0 None 245 2 Human 7.7 pKi = 7.7 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 397 7 3 7 4.3 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2009.01.027
CHEMBL464509 177909 0 None 245 2 Human 7.7 pKi = 7.7 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 397 7 3 7 4.3 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2009.01.027
10224934 195679 0 None -1 2 Human 7.7 pKi = 7.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 435 7 4 7 2.5 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CC[C@H](O)C3)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL556656 195679 0 None -1 2 Human 7.7 pKi = 7.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 435 7 4 7 2.5 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CC[C@H](O)C3)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
10272255 141715 0 None -41 2 Human 6.7 pKi = 6.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
CHEMBL385715 141715 0 None -41 2 Human 6.7 pKi = 6.7 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 399 7 3 7 3.1 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
44565049 193207 0 None -4 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 447 8 3 7 3.5 CCC(F)(F)[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.033
CHEMBL523437 193207 0 None -4 2 Human 7.7 pKi = 7.7 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 447 8 3 7 3.5 CCC(F)(F)[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.033
136036528 94783 0 None -77 2 Human 6.6 pKi = 6.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 417 7 3 8 3.8 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2007.10.094
136097219 94783 0 None -77 2 Human 6.6 pKi = 6.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 417 7 3 8 3.8 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2007.10.094
CHEMBL253306 94783 0 None -77 2 Human 6.6 pKi = 6.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 417 7 3 8 3.8 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2007.10.094
44565051 187107 1 None -3 2 Human 7.6 pKi = 7.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 7 3 7 3.2 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)F)o1 10.1016/j.bmcl.2009.01.033
CHEMBL491487 187107 1 None -3 2 Human 7.6 pKi = 7.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 7 3 7 3.2 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(C)F)o1 10.1016/j.bmcl.2009.01.033
44440858 148575 0 None -4 2 Human 7.6 pKi = 7.6 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)cs1 10.1016/j.bmcl.2007.04.016
CHEMBL393900 148575 0 None -4 2 Human 7.6 pKi = 7.6 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)cs1 10.1016/j.bmcl.2007.04.016
44564999 193246 0 None -12 2 Human 7.6 pKi = 7.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 8 3 7 4.0 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)c1 10.1016/j.bmcl.2009.01.033
CHEMBL523769 193246 0 None -12 2 Human 7.6 pKi = 7.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 8 3 7 4.0 CC(C)c1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)c1 10.1016/j.bmcl.2009.01.033
45272064 195239 0 None -37 2 Human 5.6 pKi = 5.6 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cc(C)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
CHEMBL550945 195239 0 None -37 2 Human 5.6 pKi = 5.6 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 413 7 3 7 3.4 CC[C@@H](Nc1c(Nc2cc(C)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
136036518 94628 0 None -316 2 Human 5.6 pKi = 5.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 500 5 3 8 2.1 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccc2c(c1)OCCN2C 10.1016/j.bmcl.2007.10.094
CHEMBL252289 94628 0 None -316 2 Human 5.6 pKi = 5.6 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 500 5 3 8 2.1 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccc2c(c1)OCCN2C 10.1016/j.bmcl.2007.10.094
10027494 93634 0 None -70 2 Human 6.6 pKi = 6.6 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 465 8 3 7 4.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C2CCCCC2)co1 10.1016/j.bmcl.2007.04.016
CHEMBL246733 93634 0 None -70 2 Human 6.6 pKi = 6.6 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 465 8 3 7 4.6 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C2CCCCC2)co1 10.1016/j.bmcl.2007.04.016
10310100 93476 42 None -3 2 Human 8.5 pKi = 8.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 425 8 3 7 3.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.04.016
CHEMBL246108 93476 42 None -3 2 Human 8.5 pKi = 8.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 425 8 3 7 3.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.04.016
44564998 187108 0 None -2 2 Human 7.5 pKi = 7.5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1ccoc1[C@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)C(C)(F)F 10.1016/j.bmcl.2009.01.033
CHEMBL491506 187108 0 None -2 2 Human 7.5 pKi = 7.5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1ccoc1[C@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)C(C)(F)F 10.1016/j.bmcl.2009.01.033
44440866 93522 0 None -38 2 Human 7.5 pKi = 7.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 453 10 3 7 4.5 CCC(CC)c1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
CHEMBL246318 93522 0 None -38 2 Human 7.5 pKi = 7.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 453 10 3 7 4.5 CCC(CC)c1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
45272847 195694 0 None -6 2 Human 7.5 pKi = 7.5 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 463 8 4 7 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CCCC3C(=O)O)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL556862 195694 0 None -6 2 Human 7.5 pKi = 7.5 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 463 8 4 7 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CCCC3C(=O)O)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
44565098 187056 0 None -4 2 Human 7.5 pKi = 7.5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 457 6 3 7 3.4 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(Cl)o3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL491134 187056 0 None -4 2 Human 7.5 pKi = 7.5 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 457 6 3 7 3.4 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc(Cl)o3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
136036251 176940 0 None 2 2 Human 7.5 pKi = 7.5 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 496 9 3 9 5.9 CC(C)c1coc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)CCC#N)c2O)C(C)(C)C)c1 10.1016/j.bmcl.2009.01.027
CHEMBL462156 176940 0 None 2 2 Human 7.5 pKi = 7.5 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 496 9 3 9 5.9 CC(C)c1coc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)CCC#N)c2O)C(C)(C)C)c1 10.1016/j.bmcl.2009.01.027
10478354 93474 0 None -16 2 Human 7.5 pKi = 7.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 10 3 7 3.9 CCCCc1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
CHEMBL246106 93474 0 None -16 2 Human 7.5 pKi = 7.5 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 10 3 7 3.9 CCCCc1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
136036238 174385 0 None 66 2 Human 7.5 pKi = 7.5 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 401 7 3 8 4.2 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(C)co1 10.1016/j.bmcl.2009.01.027
CHEMBL455209 174385 0 None 66 2 Human 7.5 pKi = 7.5 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 401 7 3 8 4.2 CC[C@@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(C)co1 10.1016/j.bmcl.2009.01.027
136036254 190192 0 None 117 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 437 6 3 7 4.4 CN(C)C(=O)c1cccc(Nc2nsnc2NC(c2ccccc2)C(F)(F)F)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL517430 190192 0 None 117 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 437 6 3 7 4.4 CN(C)C(=O)c1cccc(Nc2nsnc2NC(c2ccccc2)C(F)(F)F)c1O 10.1016/j.bmcl.2009.01.027
136036531 94714 0 None -30 2 Human 6.4 pKi = 6.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 7 3 8 3.9 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C2(C)CC2)c1O 10.1016/j.bmcl.2007.10.094
136104502 94714 0 None -30 2 Human 6.4 pKi = 6.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 7 3 8 3.9 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C2(C)CC2)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL252911 94714 0 None -30 2 Human 6.4 pKi = 6.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 7 3 8 3.9 CN(C)C(=O)c1cccc(Nc2n[s+]([O-])nc2N[C@@H](c2ccco2)C2(C)CC2)c1O 10.1016/j.bmcl.2007.10.094
44440860 93387 1 None -15 2 Human 6.4 pKi = 6.4 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 8 3 7 3.2 CCc1ccoc1[C@@H](CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.bmcl.2007.04.016
CHEMBL245697 93387 1 None -15 2 Human 6.4 pKi = 6.4 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 8 3 7 3.2 CCc1ccoc1[C@@H](CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.bmcl.2007.04.016
135537605 155338 0 None -7 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 6 3 8 4.5 Cc1ccc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2007.10.094
136036533 155338 0 None -7 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 6 3 8 4.5 Cc1ccc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2007.10.094
CHEMBL403206 155338 0 None -7 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 6 3 8 4.5 Cc1ccc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2007.10.094
136036249 191121 0 None 4 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 497 6 3 8 5.8 Cc1ccc([C@H](Nc2nsnc2Nc2ccc(C(F)(F)F)c(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL518802 191121 0 None 4 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 497 6 3 8 5.8 Cc1ccc([C@H](Nc2nsnc2Nc2ccc(C(F)(F)F)c(C(=O)N(C)C)c2O)C(C)(C)C)o1 10.1016/j.bmcl.2009.01.027
44249825 196400 0 None -85 2 Human 6.4 pKi = 6.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 407 7 3 6 3.3 CC[C@@H](Nc1c(Nc2c(C)ccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL562781 196400 0 None -85 2 Human 6.4 pKi = 6.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 407 7 3 6 3.3 CC[C@@H](Nc1c(Nc2c(C)ccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
10200589 94940 0 None -9 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.01.033
CHEMBL254370 94940 0 None -9 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.01.033
44565148 177774 0 None -2 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 6 3 6 3.1 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccccc3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL464301 177774 0 None -2 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 6 3 6 3.1 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccccc3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
10200589 94940 0 None -9 2 Human 7.4 pKi = 7.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL254370 94940 0 None -9 2 Human 7.4 pKi = 7.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 393 7 3 6 3.0 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
136036526 155150 0 None -501 2 Human 5.4 pKi = 5.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 7 4.3 CC(C)[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cccc(F)c1 10.1016/j.bmcl.2007.10.094
136097225 155150 0 None -501 2 Human 5.4 pKi = 5.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 7 4.3 CC(C)[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cccc(F)c1 10.1016/j.bmcl.2007.10.094
CHEMBL402144 155150 0 None -501 2 Human 5.4 pKi = 5.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 7 4.3 CC(C)[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cccc(F)c1 10.1016/j.bmcl.2007.10.094
10225736 196318 0 None -3 2 Human 7.4 pKi = 7.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 448 7 3 7 2.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CCN(C)CC3)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
CHEMBL562286 196318 0 None -3 2 Human 7.4 pKi = 7.4 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 448 7 3 7 2.7 CC[C@@H](Nc1c(Nc2cccc(C(=O)N3CCN(C)CC3)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.05.049
45485757 197510 0 None -37 2 Human 5.4 pKi = 5.4 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 394 7 3 7 2.3 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.08.014
CHEMBL570042 197510 0 None -37 2 Human 5.4 pKi = 5.4 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 394 7 3 7 2.3 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccc1 10.1016/j.bmcl.2009.08.014
44564943 179233 0 None -6 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 401 7 3 7 2.5 C[C@H](F)[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.bmcl.2009.01.033
CHEMBL472749 179233 0 None -6 2 Human 7.4 pKi = 7.4 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 401 7 3 7 2.5 C[C@H](F)[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccco1 10.1016/j.bmcl.2009.01.033
136036253 177775 0 None 234 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 363 5 3 7 3.5 C[C@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)C(C)(C)C 10.1016/j.bmcl.2009.01.027
CHEMBL464302 177775 0 None 234 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 363 5 3 7 3.5 C[C@H](Nc1nsnc1Nc1cccc(C(=O)N(C)C)c1O)C(C)(C)C 10.1016/j.bmcl.2009.01.027
136036257 190788 0 None 229 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 465 6 3 7 5.4 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)CCC3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL518355 190788 0 None 229 2 Human 7.4 pKi = 7.4 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 465 6 3 7 5.4 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)CCC3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
135405057 94808 0 None -9 2 Human 7.3 pKi = 7.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 501 4 3 8 2.7 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc3c(c2)OCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL253495 94808 0 None -9 2 Human 7.3 pKi = 7.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 501 4 3 8 2.7 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccc3c(c2)OCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
136036523 155464 0 None -8 2 Human 6.3 pKi = 6.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 379 5 3 7 3.2 C[C@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)C(C)(C)C 10.1016/j.bmcl.2007.10.094
136097664 155464 0 None -8 2 Human 6.3 pKi = 6.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 379 5 3 7 3.2 C[C@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)C(C)(C)C 10.1016/j.bmcl.2007.10.094
CHEMBL403936 155464 0 None -8 2 Human 6.3 pKi = 6.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 379 5 3 7 3.2 C[C@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)C(C)(C)C 10.1016/j.bmcl.2007.10.094
44564942 189789 0 None -1 2 Human 8.3 pKi = 8.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 415 7 3 7 2.8 Cc1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H](C)F)c1 10.1016/j.bmcl.2009.01.033
CHEMBL516184 189789 0 None -1 2 Human 8.3 pKi = 8.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 415 7 3 7 2.8 Cc1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)[C@H](C)F)c1 10.1016/j.bmcl.2009.01.033
135457545 95013 0 None -18 2 Human 7.3 pKi = 7.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 8 4.4 Cc1cc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)oc1C 10.1016/j.bmcl.2007.10.094
136036530 95013 0 None -18 2 Human 7.3 pKi = 7.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 8 4.4 Cc1cc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)oc1C 10.1016/j.bmcl.2007.10.094
CHEMBL254943 95013 0 None -18 2 Human 7.3 pKi = 7.3 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 7 3 8 4.4 Cc1cc([C@H](Nc2n[s+]([O-])nc2Nc2cccc(C(=O)N(C)C)c2O)C(C)C)oc1C 10.1016/j.bmcl.2007.10.094
9978981 93684 0 None -25 2 Human 7.3 pKi = 7.3 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 7 3 7 3.3 CC(C)c1coc([C@@H](C)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
CHEMBL246941 93684 0 None -25 2 Human 7.3 pKi = 7.3 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 7 3 7 3.3 CC(C)c1coc([C@@H](C)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
135937901 193145 0 None 6 2 Human 7.3 pKi = 7.3 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 469 6 3 9 4.6 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)OCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL522959 193145 0 None 6 2 Human 7.3 pKi = 7.3 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 469 6 3 9 4.6 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2ccc3c(c2)OCO3)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
45485784 199038 0 None -40 2 Human 5.3 pKi = 5.3 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 395 7 3 8 1.7 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccn1 10.1016/j.bmcl.2009.08.014
CHEMBL585928 199038 0 None -40 2 Human 5.3 pKi = 5.3 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 395 7 3 8 1.7 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccccn1 10.1016/j.bmcl.2009.08.014
136036240 174478 0 None 190 2 Human 7.3 pKi = 7.3 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 441 6 3 8 4.3 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.027
CHEMBL455430 174478 0 None 190 2 Human 7.3 pKi = 7.3 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 441 6 3 8 4.3 Cc1ccc([C@H](Nc2nsnc2Nc2cccc(C(=O)N(C)C)c2O)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.027
10411524 93633 0 None -17 2 Human 7.3 pKi = 7.3 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 451 8 3 7 4.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C2CCCC2)co1 10.1016/j.bmcl.2007.04.016
CHEMBL246731 93633 0 None -17 2 Human 7.3 pKi = 7.3 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 451 8 3 7 4.2 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C2CCCC2)co1 10.1016/j.bmcl.2007.04.016
45271150 196569 0 None -10 2 Human 7.3 pKi = 7.3 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 424 7 3 8 2.9 CC[C@@H](Nc1c(Nc2cc(C#N)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
CHEMBL563875 196569 0 None -10 2 Human 7.3 pKi = 7.3 Binding
Displacement of human [125I]IL-8 from human CXCR1Displacement of human [125I]IL-8 from human CXCR1
ChEMBL 424 7 3 8 2.9 CC[C@@H](Nc1c(Nc2cc(C#N)cc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cccs1 10.1016/j.bmcl.2009.05.049
135539041 94809 0 None - 1 Human 5.2 pKi = 5.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 5 3 7 2.2 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2007.10.094
CHEMBL253496 94809 0 None - 1 Human 5.2 pKi = 5.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 5 3 7 2.2 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2007.10.094
42642630 179386 0 None -3 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 423 6 3 7 2.7 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccco3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL473959 179386 0 None -3 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 423 6 3 7 2.7 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccco3)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
10127252 187088 0 None 1 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)o1 10.1016/j.bmcl.2009.01.033
CHEMBL491330 187088 0 None 1 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)o1 10.1016/j.bmcl.2009.01.033
10194831 193281 0 None 2 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)c1 10.1016/j.bmcl.2009.01.033
CHEMBL523984 193281 0 None 2 2 Human 8.2 pKi = 8.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 433 7 3 7 3.1 Cc1coc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(C)(F)F)c1 10.1016/j.bmcl.2009.01.033
135539055 94870 0 None -5 2 Human 7.2 pKi = 7.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 447 4 3 7 2.5 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
CHEMBL253921 94870 0 None -5 2 Human 7.2 pKi = 7.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 447 4 3 7 2.5 CN(C)C(=O)c1cccc(NC2=NS(=O)(=O)N=C2N[C@@H](c2ccco2)C(C)(C)C)c1O 10.1016/j.bmcl.2007.10.094
135543782 95012 0 None -6 2 Human 7.2 pKi = 7.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 8 3 8 4.6 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.10.094
136036529 95012 0 None -6 2 Human 7.2 pKi = 7.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 8 3 8 4.6 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.10.094
CHEMBL254942 95012 0 None -6 2 Human 7.2 pKi = 7.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 445 8 3 8 4.6 CC[C@@H](Nc1n[s+]([O-])nc1Nc1cccc(C(=O)N(C)C)c1O)c1cc(C(C)C)co1 10.1016/j.bmcl.2007.10.094
45485775 197685 0 None -36 2 Human 5.2 pKi = 5.2 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 424 8 3 8 2.3 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(OC)cc1 10.1016/j.bmcl.2009.08.014
CHEMBL571141 197685 0 None -36 2 Human 5.2 pKi = 5.2 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 424 8 3 8 2.3 CCN(Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1ccc(OC)cc1 10.1016/j.bmcl.2009.08.014
136036519 155137 0 None -58 2 Human 6.2 pKi = 6.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 5 3 6 2.7 CC(C)[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1cccc(F)c1 10.1016/j.bmcl.2007.10.094
CHEMBL402076 155137 0 None -58 2 Human 6.2 pKi = 6.2 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 461 5 3 6 2.7 CC(C)[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1cccc(F)c1 10.1016/j.bmcl.2007.10.094
10237849 93388 0 None -7 2 Human 8.2 pKi = 8.2 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 8 3 7 3.2 CCc1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
CHEMBL245699 93388 0 None -7 2 Human 8.2 pKi = 8.2 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 411 8 3 7 3.2 CCc1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
136036246 177536 0 None 97 2 Human 8.1 pKi = 8.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 469 7 3 8 5.2 CC[C@@H](Nc1nsnc1Nc1ccc(C(F)(F)F)c(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.027
CHEMBL464013 177536 0 None 97 2 Human 8.1 pKi = 8.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 469 7 3 8 5.2 CC[C@@H](Nc1nsnc1Nc1ccc(C(F)(F)F)c(C(=O)N(C)C)c1O)c1ccc(C)o1 10.1016/j.bmcl.2009.01.027
44440865 151879 0 None -12 2 Human 8.1 pKi = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 9 3 7 4.1 CCC(C)c1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
CHEMBL396573 151879 0 None -12 2 Human 8.1 pKi = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 439 9 3 7 4.1 CCC(C)c1coc([C@@H](CC)Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)c1 10.1016/j.bmcl.2007.04.016
136036243 190578 0 None 30 2 Human 7.1 pKi = 7.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 465 6 3 8 5.6 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2cc3ccccc3o2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL518030 190578 0 None 30 2 Human 7.1 pKi = 7.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 465 6 3 8 5.6 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2cc3ccccc3o2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
136036235 187005 0 None 16 2 Human 7.1 pKi = 7.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 443 6 3 7 5.0 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2cccc(F)c2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
CHEMBL490689 187005 0 None 16 2 Human 7.1 pKi = 7.1 Binding
Displacement of IL8 from CXCR1 receptorDisplacement of IL8 from CXCR1 receptor
ChEMBL 443 6 3 7 5.0 CN(C)C(=O)c1cccc(Nc2nsnc2N[C@@H](c2cccc(F)c2)C(C)(C)C)c1O 10.1016/j.bmcl.2009.01.027
44157035 191153 0 None -1 2 Human 8.1 pKi = 8.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 477 6 3 8 2.9 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc4c(c3)OCO4)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
CHEMBL518857 191153 0 None -1 2 Human 8.1 pKi = 8.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 477 6 3 8 2.9 CN(C)C(=O)c1cccc(Nc2c(N[C@@H](c3ccc4c(c3)OCO4)C(F)(F)F)c(=O)c2=O)c1O 10.1016/j.bmcl.2009.01.033
135485575 94627 0 None - 1 Human 5.1 pKi = 5.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 5 3 6 2.3 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2007.10.094
CHEMBL252288 94627 0 None - 1 Human 5.1 pKi = 5.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 429 5 3 6 2.3 CC[C@@H](NC1=NS(=O)(=O)N=C1Nc1cccc(C(=O)N(C)C)c1O)c1ccccc1 10.1016/j.bmcl.2007.10.094
10238257 189673 0 None -1 2 Human 8.1 pKi = 8.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 437 6 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.033
CHEMBL515262 189673 0 None -1 2 Human 8.1 pKi = 8.1 Binding
Binding affinity to CXCR1Binding affinity to CXCR1
ChEMBL 437 6 3 7 3.1 Cc1ccc([C@H](Nc2c(Nc3cccc(C(=O)N(C)C)c3O)c(=O)c2=O)C(F)(F)F)o1 10.1016/j.bmcl.2009.01.033
10150721 93359 0 None -2 2 Human 8.1 pKi = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 397 7 3 7 2.9 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)co1 10.1016/j.bmcl.2007.04.016
CHEMBL245501 93359 0 None -2 2 Human 8.1 pKi = 8.1 Binding
Displacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPADisplacement of [125I]IL8 from human CXCR1 expressed in CHO cells by SPA
ChEMBL 397 7 3 7 2.9 CC[C@@H](Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O)c1cc(C)co1 10.1016/j.bmcl.2007.04.016
44626319 198421 0 None -81 2 Human 5.0 pKi = 5.0 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 346 7 3 7 1.1 CCN(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.bmcl.2009.08.014
CHEMBL577075 198421 0 None -81 2 Human 5.0 pKi = 5.0 Binding
Displacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation countingDisplacement of [125I]IL-8 from human CXCR1 expressed in mouse BaF3 cells by liquid scintillation counting
ChEMBL 346 7 3 7 1.1 CCN(CC)Nc1c(Nc2cccc(C(=O)N(C)C)c2O)c(=O)c1=O 10.1016/j.bmcl.2009.08.014
56645576 548 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.
Guide to Pharmacology 476 10 3 8 1.5 OC[C@@H]([C@H](Oc1nc(SCc2cccc(c2F)F)nc(c1)NS(=O)(=O)N1CCC1)C)O 25736418
8948 548 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.
Guide to Pharmacology 476 10 3 8 1.5 OC[C@@H]([C@H](Oc1nc(SCc2cccc(c2F)F)nc(c1)NS(=O)(=O)N1CCC1)C)O 25736418
CHEMBL4562140 548 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.
Guide to Pharmacology 476 10 3 8 1.5 OC[C@@H]([C@H](Oc1nc(SCc2cccc(c2F)F)nc(c1)NS(=O)(=O)N1CCC1)C)O 25736418
821 1265 0 None -3 3 Human 8.1 pKd = 8.1 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 22262769
820 1263 0 None 1 2 Human 7.0 pKi = 7 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 9692902
821 1265 0 None -3 3 Human 9.2 pKi = 9.2 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 10188995
821 1265 0 None -3 3 Human 9.2 pKi = 9.2 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 1379593
821 1265 0 None -3 3 Human 9.2 pKi = 9.2 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 15282370
821 1265 0 None -3 3 Human 9.2 pKi = 9.2 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 15946947
821 1265 0 None -3 3 Human 9.2 pKi = 9.2 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 8940121
823 2538 0 None - 1 Human 8.1 pKi None 8.1 Binding
UnclassifiedUnclassified
Guide to Pharmacology None None None None 10102815