Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Agonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assayAgonist activity at CXCR3 expressed in HEK293 cells by [35S]GTPgamma binding assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Positive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assayPositive allosteric modulation of human CXCR3 expressed in HEK293T cell membranes after 30 mins by [35S]GTPgammaS incorporation assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to IP10 in bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to IP10 in buffer
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to IP10 in bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to IP10 in buffer
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to MIG in bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to MIG in buffer
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to MIG in bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to MIG in buffer
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in RPMI bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in RPMI buffer
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in RPMI bufferAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in RPMI buffer
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant mouse CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL10 by calcium FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hMIG-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hMIG-induced chemotaxis
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hMIG-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hMIG-induced chemotaxis
Inhibition of CXCL10 (IP-10)-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL10 (IP-10)-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL10 (IP-10)-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL10 (IP-10)-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL11 by calcium FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assay
Antagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assayAntagonist activity at CXCR3 (unknown origin) in presence of CXCL9 by calcium FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at mouse CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hIP10-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hIP10-induced chemotaxis
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hIP10-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hIP10-induced chemotaxis
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 assessed as inhibition of ITAC-induced calcium mobilizationAntagonist activity at human CXCR3 assessed as inhibition of ITAC-induced calcium mobilization
Antagonist activity at human CXCR3 assessed as inhibition of ITAC-induced calcium mobilizationAntagonist activity at human CXCR3 assessed as inhibition of ITAC-induced calcium mobilization
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 assessed as inhibition of MIG-induced calcium mobilizationAntagonist activity at human CXCR3 assessed as inhibition of MIG-induced calcium mobilization
Antagonist activity at human CXCR3 assessed as inhibition of MIG-induced calcium mobilizationAntagonist activity at human CXCR3 assessed as inhibition of MIG-induced calcium mobilization
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced cell migration by flow cytometryAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced cell migration by flow cytometry
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced cell migration by flow cytometryAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced cell migration by flow cytometry
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human Galphai4qi4-coupled CXCR3A expressed in engineered CHO cells assessed as inhibition of IP-10-induced calcium mobilization by FLIPR assayAntagonist activity at human Galphai4qi4-coupled CXCR3A expressed in engineered CHO cells assessed as inhibition of IP-10-induced calcium mobilization by FLIPR assay
Antagonist activity at human Galphai4qi4-coupled CXCR3A expressed in engineered CHO cells assessed as inhibition of IP-10-induced calcium mobilization by FLIPR assayAntagonist activity at human Galphai4qi4-coupled CXCR3A expressed in engineered CHO cells assessed as inhibition of IP-10-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasmaAntagonistic activity to CXCR3 receptor expressed in PBMC assessed as inhibition of ITAC-mediated cell migration in presence of 100% human plasma
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometryAntagonist activity at CXCR3 in rat leukocytes assessed as inhibition of ITAC-induced cell migration by flow cytometry
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at mouse recombinant CXCR3 expressed in human U2OS cellsAntagonist activity at mouse recombinant CXCR3 expressed in human U2OS cells
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor expressed in CHO-K1 cells assessed as human IP10-induced calcium flux by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasmaAntagonist activity against human CXCR3 expressed in human PBMC assessed as inhibition of cell migration in response to ITAC in plasma
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in L1.2 cells assessed as inhibition of I-TAC-induced Ca2+ mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challengeAntagonist activity at human CXCR3 expressed in CHO cells assessed as inhibition of ITAC-stimulated [35S]GTPgammaS binding pretreated 30 mins before ITAC challenge
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hI-TAC-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hI-TAC-induced chemotaxis
Antagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hI-TAC-induced chemotaxisAntagonist activity at recombinant human CXCR3 receptor expressed in Ba/F3 cells assessed as hI-TAC-induced chemotaxis
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasmaAntagonist activity at CXCR3 assessed as ITAC-mediated migration of human PBMC in presence of 100% human plasma
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysisAntagonist activity at human recombinant CXCR3 expressed in CHO-K1 cells measured after 10 mins in presence of CXCL10 by FLIPR analysis
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assayAntagonist activity at recombinant human CXCR3 expressed in human CHO-K1 cells co-expressing Galpha15 incubated for 10 mins by Fluo-4AM dye based FLIPR assay
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serumAntagonist activity at CXCR3 assessed as inhibition of ITAC-mediated cell migration in presence of 100% human serum
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at mouse CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPRAntagonist activity at human CXCR3 expressed in CHO cell membrane assessed as inhibition of calcium flux by FLIPR
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assayAntagonist activity at human CXCR3 expressed in CHO cells by FLIPR-based calcium mobilization assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).FLIPR Assay: The experiments were carried out on the FLIPR TETRA.RTM. platform from Molecular Devices. After the basal level had been read, the compounds were added to the cells expressing the chemokine receptor of interest and the agonist activity was read at 10 seconds. After a further incubation for 10 minutes, the cells were activated, with a concentration equivalent to the AC80, using a reference agonist in order to detect whether this compound exhibits antagonist activity.Each cell line expressing a chemokine receptor was established on the basis of the Chem-1 cell stably expressing the recombinant form of the chemokine receptor and also an associated G protein, with the aim of coupling the receptor to the calcium signalling pathway. 21 receptors belonging to the chemokine receptor family (CCRs and CXCRs) were analyzed. All the CXCR2 antagonists were tested in a dose-dependent manner and the concentration corresponding to 50% inhibition of the response was determined (IC.sub.50).
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrsAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of IP10-induced chemotaxis after 4 hrs
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assayAntagonist activity at human CXCR3 expressed in mouse L1.2 cells assessed as inhibition of ITAC-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5Inhibition of CXCL11-stimulated calcium release in HEK293 cells expressing recombinant human CXCR3 and chimeric G protein Gqi5
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assayAntagonist activity at recombinant human CXCR3 in human U2SO cells assessed as reduction in CXCL10-induced beta-arrestin recruitment by TANGO assay
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at human recombinant CXCR3 in human venous blood assessed as receptor internalization measured for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assayAntagonist activity at human recombinant CXCR3 receptor assessed as human IP10-induced calcium mobilization by FLIPR assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in HEK293T cells coexpressing Galphaqi5 assessed as inhibition of CXCL10-induced [3H]inositol phosphate levels by liquid scintillation countingAntagonist activity at human CXCR3 expressed in HEK293T cells coexpressing Galphaqi5 assessed as inhibition of CXCL10-induced [3H]inositol phosphate levels by liquid scintillation counting
Antagonist activity at human CXCR3 expressed in HEK293T cells coexpressing Galphaqi5 assessed as inhibition of CXCL10-induced [3H]inositol phosphate levels by liquid scintillation countingAntagonist activity at human CXCR3 expressed in HEK293T cells coexpressing Galphaqi5 assessed as inhibition of CXCL10-induced [3H]inositol phosphate levels by liquid scintillation counting
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assayAntagonist activity at human CXCR3 expressed in CHO cells by [35S]GTP-gamma-S binding assay
Antagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonistAntagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonist
Antagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonistAntagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonist
Antagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonistAntagonist potency determined by FLIPR calcium mobilization assay, in CHO-K1 cells expressing recombinant CXCR3 receptors with CXCL10 as agonist
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink1-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
Positive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader methodPositive allosteric modulation of ProLink2-tagged wild type CXCR3 (unknown origin) expressed in HEK293T cells assessed as beta-arrestin-2 recruitment incubated for 4 hrs by chemiluminescence-based microplate reader method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-ITAC from human CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-ITAC from human CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-ITAC from human CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-ITAC from human CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at mouse CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary mouse T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assayAntagonist activity at human CXCR3-mediated chemotaxis expressed in CD3/CD28-activated primary human T cells assessed as inhibition of CXCLI1 mediated cell migration incubated for 45 mins by Boyden chamber assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in DBA/1 mouse whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Receptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
Receptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from rhesus monkey CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from rhesus monkey CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from rhesus monkey CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from rhesus monkey CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Antagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at rat CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]I-TAC from mouse CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from mouse CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from mouse CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from mouse CXCR3 expressed in CHO cells by scintillation proximity assay
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Receptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
Receptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in mouse whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Antagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in Wistar rat whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from mouse CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from mouse CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from mouse CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from mouse CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL9 induced calcium flux by FLIPR method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]ITAC from CXCR3 in PHA/IL-2 activated human PBMC pretreated 30 mins before [125I]ITAC challenge after 1 hr by liquid scintillation counterDisplacement of [125I]ITAC from CXCR3 in PHA/IL-2 activated human PBMC pretreated 30 mins before [125I]ITAC challenge after 1 hr by liquid scintillation counter
Displacement of [125I]ITAC from CXCR3 in PHA/IL-2 activated human PBMC pretreated 30 mins before [125I]ITAC challenge after 1 hr by liquid scintillation counterDisplacement of [125I]ITAC from CXCR3 in PHA/IL-2 activated human PBMC pretreated 30 mins before [125I]ITAC challenge after 1 hr by liquid scintillation counter
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Induction of CXCR3 receptor internalization in mouse whole blood in presence of CXCl10 by flow cytometryInduction of CXCR3 receptor internalization in mouse whole blood in presence of CXCl10 by flow cytometry
Induction of CXCR3 receptor internalization in mouse whole blood in presence of CXCl10 by flow cytometryInduction of CXCR3 receptor internalization in mouse whole blood in presence of CXCl10 by flow cytometry
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at dog CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from rat CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from rat CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from rat CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from rat CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at mouse CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from dog CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from dog CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-IP10 from dog CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-IP10 from dog CXCR3 expressed in human PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at human CXCR3 expressed in CHO-K1 cells assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometryAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by flow cytometry
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Antagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 in human whole blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in human PBMC after 2 hrs by scintillation counting in plasmaDisplacement of [125I]-1P10 from human CXCR3 expressed in human PBMC after 2 hrs by scintillation counting in plasma
Displacement of [125I]-1P10 from human CXCR3 expressed in human PBMC after 2 hrs by scintillation counting in plasmaDisplacement of [125I]-1P10 from human CXCR3 expressed in human PBMC after 2 hrs by scintillation counting in plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in rat blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasmaDisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in EDTA-anti-coagulated human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Displacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasmaDisplacement of [125I]IP10 from CXCR3 receptor expressed in PBMC in presence of human plasma
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assayDisplacement of [125I]-CXCL10 from CXCR3 in human PBMC cells by scintillation proximity assay
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by [35S]GTPgammaS binding assay
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from human CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Displacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membraneDisplacement of [125I]-CXCL10 from mouse CXCR3 expressed in CHO cell membrane
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of [125I]I-TAC from human CXCR3 expressed in CHO cells by scintillation proximity assay
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Antagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysisAntagonist activity at CXCR3 (unknown origin) in human T cells in venous blood assessed as receptor internalization incubated for 30 mins in presence of CXCL10 by flow cytometric analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Ex vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometryEx vivo receptor occupancy of CXCR3 in human blood assessed as inhibition of ITAC binding after 1 hr by flow cytometry
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation countingDisplacement of [125I]-1P10 from human CXCR3 expressed in PBMC after 2 hrs in RPMI buffer by scintillation counting
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cellsDisplacement of [125I]CXCL10 from human CXCR3 expressed in mouse BA/F3 cells
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
Displacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assayDisplacement of radiolabeled CXCL11 from human CXCR3 expressed in CHO cells by scintillation proximity assay
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMCDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC
Receptor occupancy of CXCR3 in human whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in human whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
Receptor occupancy of CXCR3 in human whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysisReceptor occupancy of CXCR3 in human whole blood assessed as inhibition of ITAC binding by fluorescence quenching based FACS analysis
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Displacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasmaDisplacement of [125I]IP10 from human recombinant CXCR3 receptor expressed in IL2-activated human PBMC in presence of plasma
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Inhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligandInhibitory concentration against CX3C chemokine receptor 3 expressed in human HEK293 cells using [125I]CXCL10 as radioligand
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.Competition Radioligand Binding Assay: Competition radioligand binding assays were performed to determine the in vitro potency of the newly synthesized, unlabeled test compounds to displace the specific binding of the radiolabelled endogenous chemokine, 125I-CXCL10, from the human CXCR3-A receptor. IC50 values were determined for the test compounds and used to explore the structure-activity relationships (SAR). The established SAR was used to feed back the molecular design and to suggest some suitable modifications for groups and structural elements by which the affinity of test compounds for the human CXCR3 receptor would be improved.
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
Displacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting methodDisplacement of [125I]-CXCL10 from human recombinant CXCR3 transfected in Flp-In-CHO cell membranes after 60 mins by gamma counting method
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.FLIPR Assay: The bioactivity of compounds is tested in a fluorometric imaging plate reader (FLIPR: Molecular Devices) using engineered CHO-K1 cells expressing the human CXCR3A coupled to a G protein (Galpha(16)). Cells are plated the day prior to bioassay in F12 medium supplemented with 10% FBS and G418 and hygromycin antibiotics to maintain recombinant selection. At the day of bioassay, cells are washed and dye loaded for one hour with Fluo-4-AM (Invitrogen) in Hanks Balanced Salt Solution (Invitrogen), buffered with 20 mM Hepes at pH 7.4 and sodium bicarbonate (0.015%), containing 5 mM probenecid. This buffer, but lacking the dye and containing probenecid at a concentration of 2.5 nM, is also is used for washing steps (wash buffer); or lacking both dye and probenecid but supplemented with 0.1% BSA for compound dilution steps (dilution buffer). Cells are washed free of excess dye and 60 microliter of wash buffer is added. Stock solutions of test compounds are made up at a concentration of 10 mM in DMSO, and serially diluted in dilution buffer to concentrations required for inhibition dose response curves. After a 10 minute incubation period at 37° C., 10 microliters of each compound dilution are transferred from a compound plate to the plate containing the recombinant cells in the FLIPR instrument according to the manufacturer's instructions. Following basal readings, 10 microliter CXCL10 agonist at a concentration of 20 nM (from Peprotech) is added, again using the FLIPR instrument. Changes in fluorescence are monitored before and after addition of the test compounds.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.Radioligand Binding Assay: The composition of the binding assay buffer is determined in a course of detailed optimization procedure. This resulted in a binding assay buffer constituted by the following components: 25 mM Hepes (pH=7.4), 5 mM MgCl2, 1 mM CaCl2, 100 mM NaCl, supplemented with 0.1% of protease free BSA (as a final concentration). Competition binding assay is performed using 125I-CXCL10 (PerkinElmer, NEX348, specific activity 2200 Ci/mmol) radioligand in a final concentration of 50-70 pM. The nonspecific binding is defined by 150 pM of hr-CXCL10 (R&D Systems, Cat No 266-IP). The total assay volume is equal to 150 ul and contained 1% of DMSO (final concentration). Binding reaction is initiated by adding of membranes (10-20 ug proteins, approximately 5x105 cell equivalents) to the reaction mixture. After 60 minutes of incubation at 25° C. the reaction is terminated by rapid filtration over GF/B glass fibre filters that are pre-soaked with 0.5% polyethyleneimine (Fluka Analytical, P3143) for 1 hour, using a Skatron cell harvester device. Filters then are washed with 8 ml of ice-cold wash buffer (modified binding buffer in which BSA is omitted and the concentration of NaCl is adjusted to 500 mM concentration). The radioactivity retained on the filters is measured by a Wizard 1470 Automatic Gamma counter.
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Inhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysisInhibition of CXCR3 receptor internalization in human venous whole blood incubated for 30 mins by flow cytometer analysis
Binding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assayBinding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assay
Binding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assayBinding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assay
Binding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assayBinding affinity to human CXCR3 expressed in CHO-K1 cell membrane assessed as dissociation constant using tritium-labeled ligand by FLIPR assay
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL11 induced calcium flux by FLIPR method
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSADisplacement of [125I]IP-10 from CXCR3 receptor expressed in human PBMC in RPMI-1640 buffer supplemented with 0.5% BSA
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Antagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at mouse CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Antagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assayAntagonist activity at human CXCR3 assessed as reduction in CXCL11 induced calcium flux by [35S]GTPgammaS binding assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Antagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR methodAntagonist activity at CXCR3 (unknown origin) assessed as reduction in CXCL10 induced calcium flux by FLIPR method
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Displacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation countingDisplacement of 125I-IP10 from recombinant human CXCR3 receptor expressed in Ba/F3 cell membrane after 1 to 4 hrs by scintillation counting
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS bindingBinding affinity to CXCR3 receptor expressed in CHO cells assessed as ITAC-induced [35]GTPgammaS binding
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Binding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assayBinding affinity to human CXCR3 receptor expressed in CHO membrane by ITAC-stimulated GTP gammaS assay
Antagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assayAntagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assay
Antagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assayAntagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assay
Antagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assayAntagonism of <sup>125</sup>I-IP10 binding to CXCR3 in a radioligand competition binding assay
Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991
Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991
Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991Binding affinity determined in an association assay using [<sup>3</sup>H]ACT-777991